
LabWindows/CVI
Advanced Analysis Library
Reference Manual
LabWindows/CVI Advanced Analysis Library
February 1998 Edition
Part Number 320686D-01

725 11,
91,
4 00,
7 1200,
Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 4130
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 8
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 37
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1994, 1998 National Instruments Corporation. All rights reserved.

 Important Information

enced
do not
riod.

ide
 costs

viewed
right to
 should
ages

nal
rranty

follow

s, or

nical,
hout

ility
edical
 of the
inical
uards,
 always
ntended
n health
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that
execute programming instructions if National Instruments receives notice of such defects during the warranty pe
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outs
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully re
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any dam
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. Natio
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The wa
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third partie
other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, wit
the prior written consent of National Instruments Corporation.

Trademarks
CVI™, natinst.com ™, National Instruments™, the National Instruments logo, and The Software is the Instrument™
are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliab
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving m
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part
user or application designer. Any use or application of National Instruments products for or involving medical or cl
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeg
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should
continue to be used when National Instruments products are being used. National Instruments products are NOT i
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard huma
and safety in medical or clinical treatment.

Contents
xiii
xiii
.xiv
xvi

1-1
1-1
.1-8
10
-11
11
13
15
16
7

-19
21
1

2-3

..2-8
-10
-16
-27

2
.2-44

..2-48
About This Manual
Organization of This Manual ...
Conventions Used in This Manual...
Related Documentation...
Customer Communication ...

Chapter 1
Advanced Analysis Library Overview

Product Overview ..
Advanced Analysis Library Function Panels...

Class and Subclass Descriptions ..
Hints for Using Advanced Analysis Function Panels.........................1-
Reporting Analysis Errors...1
About the Fast Fourier Transform (FFT)..1-
About Windowing...1-
About Digital Filters ...1-

FIR Filters...1-
IIR Filters..1-1

About Measurement Functions ...1
About Curve Fitting Functions ...1-
About Vector & Matrix Algebra Functions ..1-2

Chapter 2
Advanced Analysis Library Function Reference

Abs1D ..2-2
ACDCEstimator...
Add1D..2-4
Add2D..2-5
AllocIIRFilterPtr ..2-6
AmpPhaseSpectrum...
ANOVA1Way ...2
ANOVA2Way ...2
ANOVA3Way ...2
ArbitraryWave ...-42
AutoPowerSpectrum...
BackSub ...2-46
Bessel_CascadeCoef..
Bessel_Coef ...2-50
© National Instruments Corporation v LabWindows/CVI Advanced Analysis Library

Contents

2

. 2-58

. 2-66

. 2-72

. 2

2-86
2-88

. 2-9
. 2-98
. 2

. 2-10

2-107
2-

2
2-114

2-1
2-
BkmanWin...2-52
BlkHarrisWin ..-53
Bw_BPF .. 2-54
Bw_BSF .. 2-56
Bw_CascadeCoef ...
Bw_Coef.. 2-60
Bw_HPF .. 2-62
Bw_LPF... 2-64
CascadeToDirectCoef...
Ch_BPF ... 2-68
Ch_BSF ... 2-70
Ch_CascadeCoef ..
Ch_Coef... 2-74
Ch_HPF ... 2-76
Ch_LPF.. 2-78
CheckPosDef ..-80
Chirp .. 2-81
Cholesky.. 2-82
Clear1D.. 2-84
Clip .. 2-85
ConditionNumber ..
Contingency_Table..
Convolve.. 2-92
Copy1D.. 2-94
Correlate .. 2-95
CosTaperedWin..7
CrossPowerSpectrum ...
CrossSpectrum..-100
CxAdd.. 2-102
CxAdd1D... 2-103
CxCheckPosDef ...4
CxCholesky ...2-105
CxConditionNumber ...
CxDeterminant ..109
CxDiv .. 2-111
CxDiv1D.. 2-112
CxDotProduct ..-113
CxEigenValueVector...
CxExp .. 2-116
CxGenInvMatrix..17
CxGenLinEqs ..119
CxLinEv1D..2-121
CxLn.. 2-123
LabWindows/CVI Advanced Analysis Library vi © National Instruments Corporation

Contents

2-
2-

.2-

.

..2-1

2-

..

..2-1

2
2
2
2
2-
CxLog ..2-124
CxLU ...2-125
CxMatrixMul ...2-127
CxMatrixNorm...129
CxMatrixRank ...131
CxMul ..2-133
CxMul1D ...2-134
CxOuterProduct ..135
CxPolyRoots ...2-137
CxPow..2-139
CxPseudoInverse ...40
CxQR ...2-142
CxRecip ...2-144
CxSpecialMatrix ..145
CxSqrt ..2-148
CxSub...2-149
CxSub1D..2-150
CxSVD...2-151
CxSVDS...2-153
CxTrace..2-154
CxTranspose ..2-155
Decimate ..2-156
Deconvolve ..2-157
Determinant ...2-158
Difference ..2-159
Div1D...2-161
Div2D...2-162
DotProduct ...2-163
Elp_BPF...2-164
Elp_BSF...2-166
Elp_CascadeCoef...68
Elp_Coef ..2-170
Elp_HPF...2-172
Elp_LPF ...2-174
Equi_Ripple ...2-176
EquiRpl_BPF...-180
EquiRpl_BSF...-182
EquiRpl_HPF...-184
EquiRpl_LPF ...-186
ExBkmanWin...188
ExpFit...2-189
ExpWin ..2-191
F_Dist...2-192
© National Instruments Corporation vii LabWindows/CVI Advanced Analysis Library

Contents

2-20

2
. 2-2
2-209
2

2
2-227

2-230

2-2

. 2-2

. 2-247
FFT .. 2-193
FHT.. 2-195
FIR_Coef ... 2-197
FlatTopWin.. 2-199
ForceWin ... 2-200
ForwSub .. 2-201
FreeAnalysisMem..3
FreeIIRFilterPtr ...2-204
GaussNoise.. 2-205
GenCosWin ...-206
GenDeterminant ...07
GenEigenValueVector...
GenInvMatrix ..-211
GenLinEqs... 2-213
GenLSFit ... 2-215
GenLSFitCoef..-224
GetAnalysisErrorString ...
HamWin .. 2-228
HanWin.. 2-229
HarmonicAnalyzer ..
Histogram .. 2-232
IIRCascadeFiltering...34
IIRFiltering.. 2-236
Impulse .. 2-238
ImpulseResponse..39
Integrate... 2-241
InvCh_BPF..2-243
InvCh_BSF..2-245
InvCh_CascadeCoef ...
InvCh_Coef ...2-249
InvCh_HPF..2-251
InvCh_LPF ..2-253
InvF_Dist... 2-255
InvFFT... 2-257
InvFHT .. 2-259
InvMatrix... 2-261
InvN_Dist .. 2-262
InvT_Dist... 2-263
InvXX_Dist ...2-264
Ksr_BPF .. 2-265
Ksr_BSF .. 2-267
Ksr_HPF.. 2-269
Ksr_LPF .. 2-271
LabWindows/CVI Advanced Analysis Library viii © National Instruments Corporation

Contents

2-3

-305

2-3

.

.2-326

..
KsrWin...2-273
LinEqs..2-275
LinEv1D...2-276
LinEv2D...2-277
LinFit ...2-278
LU ..2-280
MatrixMul ..2-282
MatrixNorm ...2-284
MatrixRank ..2-286
MaxMin1D...2-288
MaxMin2D...2-289
Mean ..2-291
Median ...2-292
Mode ..2-293
Moment ..2-294
Mul1D..2-296
Mul2D..2-297
N_Dist ..2-298
Neg1D..2-299
NetworkFunctions..00
NonLinearFit..2-303
NonLinearFitWithMaxIters ...2
Normal1D ..2-307
Normal2D ..2-309
NumericIntegration..11
OuterProduct ..2-314
PeakDetector...2-315
PolyEv1D...2-318
PolyEv2D...2-320
PolyFit..2-322
PolyInterp...2-324
PowerFrequencyEstimate ...
Prod1D...2-329
PseudoInverse ..2-330
Pulse...2-332
PulseParam...2-334
QR..2-337
QScale1D...2-339
QScale2D...2-340
Ramp..2-341
RatInterp ..2-343
ReFFT ..2-345
ReInvFFT...2-346
© National Instruments Corporation ix LabWindows/CVI Advanced Analysis Library

Contents

. 2-

2-

2-372

.

2-391

2-

2

2

ResetIIRFilter .. 2-347
Reverse .. 2-349
RMS... 2-350
SawtoothWave..351
Scale1D.. 2-353
Scale2D.. 2-355
ScaledWindow...357
Set1D ... 2-359
Shift ... 2-360
Sinc .. 2-362
SinePattern... 2-363
SineWave... 2-365
Sort .. 2-367
SpecialMatrix ..2-368
Spectrum.. 2-371
SpectrumUnitConversion ..
SpInterp ... 2-376
Spline... 2-378
SquareWave..2-380
StdDev ... 2-382
Sub1D.. 2-383
Sub2D.. 2-384
Subset1D.. 2-385
Sum1D... 2-386
Sum2D... 2-387
SVD ... 2-388
SVDS... 2-390
SymEigenValueVector ..
T_Dist .. 2-393
ToPolar .. 2-394
ToPolar1D ... 2-395
ToRect ... 2-396
ToRect1D .. 2-397
Trace .. 2-398
TransferFunction ...399
Transpose... 2-401
Triangle.. 2-402
TriangleWave ..-403
TriWin ... 2-405
Uniform ... 2-406
UnWrap1D ..-407
Variance... 2-408
WhiteNoise.. 2-409
LabWindows/CVI Advanced Analysis Library x © National Instruments Corporation

Contents

1-14
.1-18

-1
-4
Wind_BPF ...2-410
Wind_BSF ...2-412
Wind_HPF ...2-414
Wind_LPF..2-416
XX_Dist ...2-418

Appendix A
Error Codes

Appendix B
Customer Communication

Glossary

Index

Figures
Figure 1-1. Windowed Spectrum in the Continuous Case...
Figure 1-2. Cascaded Filter Stages..

Tables
Table A-1. Advanced Analysis Library Error Codes, Sorted AlphabeticallyA
Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically...............A
© National Instruments Corporation xi LabWindows/CVI Advanced Analysis Library

About This Manual

cts

is

ou

es
.

The LabWindows/CVI Advanced Analysis Library Reference Manual
describes the functions in the LabWindows/CVI Advanced Analysis
Library. To use this manual effectively, you should be familiar with the
material presented in the LabWindows/CVI User Manual and with the
LabWindows/CVI software. Please refer to the LabWindows/CVI User
Manual for specific instructions on operating LabWindows/CVI.

Organization of This Manual
The LabWindows/CVI Advanced Analysis Library Reference Manual is
organized as follows:

• Chapter 1, Advanced Analysis Library Overview, contains a brief
product overview and general information about the Advanced
Analysis Library functions and panels.

• Chapter 2, Advanced Analysis Library Function Reference, contains a
brief explanation of each of the functions in the LabWindows/CVI
Advanced Analysis Library in alphabetical order.

• Appendix A, Error Codes, contains error codes the Advanced
Analysis Library functions return.

• Appendix B, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our produ
and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in th
manual, including the page where you can find each one.

Conventions Used in This Manual
The following conventions are used in this manual:

This icon to the left of bold italicized text denotes a note, which alerts y
to important information.

This icon to the left of bold italicized text denotes a caution, which advis
you of precautions to take to avoid injury, data loss, or a system crash!
© National Instruments Corporation xiii LabWindows/CVI Advanced Analysis Library

About This Manual

 box

on to
trix.
tes

er
tax
ths,

s or

bold Bold text denotes the names of menus, menu items, parameters, dialog
buttons, and 1D and 2D arrays. 1D arrays appear in lowercase, and
2D arrays appear in uppercase.

bold italic Bold italic text denotes a note or caution.

italic Italic text denotes variables, emphasis, a cross reference, an introducti
a key concept, or a single number or one element of an array or a ma
Parameter names in formulas appear in italic text. This font also deno
text from which you supply the appropriate word or value.

monospace Text in this font denotes text or characters that you should literally ent
from the keyboard, sections of code, programming examples, and syn
examples. This font is also used for the proper names of disk drives, pa
directories, programs, functions, filenames and extensions, and for
statements and comments taken from programs.

monospace italic Italic text in this font denotes that you must enter the appropriate word
values in the place of these items.

Related Documentation
The following documents contain information you might find helpful as
you use advanced analysis functions.

• Baher, H. Analog & Digital Signal Processing. New York: John
Wiley & Sons, 1990.

• Bates, D.M., and Watts, D.G. Nonlinear Regression Analysis and its
Applications. New York: John Wiley & Sons, 1988.

• Bracewell, R.N. “Numerical Transforms.” Science. Science-248.
11 May, 1990.

• Burden, R.L., and Faires, J.D. Numerical Analysis, 3rd ed. Boston:
Prindle, Weber & Schmidt, 1985.

• Chen, C.H., et al. Signal Processing Handbook. New York: Marcel
Dekker, Inc., 1988.

• DeGroot, M. Probability and Statistics, 2nd ed. Reading, MA:
Addison-Wesley Publishing Co., 1986.

• Dowdy, S., and Wearden, S. Statistics for Research, 2nd ed. New York:
John Wiley & Sons, 1991.

• Dudewicz, E.J., and Mishra, S.N. Modern Mathematical Statistics.
New York: John Wiley & Sons, 1988.
LabWindows/CVI Advanced Analysis Library xiv © National Instruments Corporation

About This Manual

th

e
• Duhamel, P., et al. “On Computing the Inverse DFT.” IEEE
Transactions on ASSP. ASSP-34 (1986): 1 (February).

• Dunn, O., and Clark, V. Applied Statistics: Analysis of Variance and
Regression, 2nd ed. New York: John Wiley & Sons, 1987.

• Elliot, D.F. Handbook of Digital Signal Processing Engineering
Applications. San Diego: Academic Press, 1987.

• Golub, G.H., and VanLoan, C.F. Matrix Computations, 2nd ed.
Baltimore: The Johns Hopkins University Press, 1989.

• Harris, Fredric J. “On the Use of Windows for Harmonic Analysis wi
the Discrete Fourier Transform,” Proceedings of the
IEEE-66(1978)-1.

• Maisel, J.E. “Hilbert Transform Works With Fourier Transforms to
Dramatically Lower Sampling Rates.” Personal Engineering and
Instrumentation News. PEIN-7 (1990): 2 (February).

• McClellan, J.H. “A Computer Program for Designing Optimum FIR
Linear Phase Digital Filters,” IEEE Transactions on Audio and
Electroacoustics. AU-21 (1973): (December).

• Miller, I., and Freund, J.E. Probability and Statistics for Engineers.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

• Neter, J., et al. Applied Linear Regression Models. Richard D.
Irwin, Inc., 1983.

• Neuvo, Y., Dong, C.-Y., and Mitra, S.K. “Interpolated Finite Impuls
Response Filters,” IEEE Transactions on ASSP. ASSP-32 (1984):
6 (June).

• O’Neill, M.A. “Faster Than Fast Fourier.” BYTE. (1988) (April).

• Oppenheim, A.V., and Schafer, R.W. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989.

• Parks, T.W., and Burrus, C.S. Digital Filter Design. New York: John
Wiley & Sons, 1987.

• Pearson, C.E. Numerical Methods in Engineering and Science. New
York: Van Nostrand Reinhold Co., 1986.

• Press, W.H., et al. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge: Cambridge University Press, 1988.

• Rabiner, L.R., and Gold, B. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

• Sorensen, H.V., et al. “On Computing the Split-Radix FFT.” IEEE
Transactions on ASSP. ASSP-34 (1986):1 (February).
© National Instruments Corporation xv LabWindows/CVI Advanced Analysis Library

About This Manual

A

ur
e it
tion
• Sorensen, H.V., et al. “Real-Valued Fast Fourier Transform
Algorithms.” IEEE Transactions on ASSP. ASSP-35 (1987): 6 (June).

• Stoer, J., and Bulirsch, R. Introduction to Numerical Analysis. New
York: Springer-Verlag, 1987.

• Vaidyanathan, P.P. Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1993.

• Wichman, B., and Hill, D. “Building a Random-Number Generator:
Pascal routine for very-long-cycle random-number sequences.” BYTE,
March 1987, pp. 127–128.

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with o
products, and we want to help if you have problems with them. To mak
easy for you to contact us, this manual contains comment and configura
forms for you to complete. These forms are in Appendix B, Customer
Communication, at the end of this manual.
LabWindows/CVI Advanced Analysis Library xvi © National Instruments Corporation

© National Instruments Corporation 1-1 LabWindows/CVI Advance
1

nced

x

ure

Advanced Analysis Library
Overview

This chapter contains a brief product overview and general information about the Adva
Analysis Library functions and panels.

Product Overview
The LabWindows Advanced Analysis Library adds additional analysis functions to the
standard LabWindows/CVI Analysis Library. The Advanced Analysis Library includes
functions for signal generation, one-dimensional (1D) and two-dimensional (2D) array
manipulation, complex operations, signal processing, statistics, curve-fitting, and matri
operations.

Advanced Analysis Library Function Panels
The Advanced Analysis Library function panels are grouped in the following tree struct
according to the types of operations they perform.

The first- and second-level headings in the tree are the names of function classes and
subclasses. Function classes and subclasses are groups of related function panels.
The third-level headings are the names of individual function panels. Each analysis
function panel generates one analysis function call.

The following shows the structure of the Advanced Analysis Library function tree.

Signal Generation
Array Operations

1D Operations
2D Operations

Complex Operations
Complex Numbers
1D Complex Operations

Signal Processing
Frequency Domain
Time Domain
d Analysis Library

Chapter 1 Advanced Analysis Library Overview
Signal Processing (continued)
IIR Digital Filters

Cascade Filter Functions
Filter Information Utilities

One-Step Filter Functions
Old-Style Filter Functions

FIR Digital Filters
Windows

Measurement
Statistics

Basics
Probability Distributions
Analysis of Variance
Nonparametric Statistics

Curve Fitting
OldStyle Function

Interpolation
Vector & Matrix Algebra

Real Matrices
Complex Matrices

Additional Numerical Methods

Table 1-1. Functions in the Advanced Analysis Library Overview Function Tree

Class/Panel Name Function Name
Signal Generation

Impulse Impulse
Pulse Pulse
Ramp Ramp
Triangle Triangle
Sine Pattern SinePattern
Uniform Noise Uniform
White Noise WhiteNoise
Gaussian Noise GaussNoise
Arbitrary Wave ArbitraryWave
Chirp Chirp
Sawtooth Wave SawtoothWave
Sinc Waveform Sinc
Sine Wave SineWave
Square Wave SquareWave
Triangle Wave TriangleWave

Array Operations
1D Operations

1D Clear Array Clear1D
1D Set Array Set1D
1D Copy Array Copy1D
1D Array Addition Add1D
1D Array Subtraction Sub1D
LabWindows/CVI Advanced Analysis Library 1-2 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview
Array Operations (continued)
1D Operations (continued)

1D Array Multiplication Mul1D
1D Array Division Div1D
1D Absolute Value Abs1D
1D Negative Value Neg1D
1D Linear Evaluation LinEv1D
1D Polynomial Evaluation PolyEv1D
1D Scaling Scale1D
1D Quick Scaling QScale1D
1D Maximum & Minimum MaxMin1D
1D Sum of Elements Sum1D
1D Product of Elements Prod1D
1D Array Subset Subset1D
1D Reverse Array Order Reverse
1D Shift Array Shift
1D Clip Array Clip
1D Sort Array Sort
1D Vector Normalization Normal1D

2D Operations
2D Array Addition Add2D
2D Array Subtraction Sub2D
2D Array Multiplication Mul2D
2D Array Division Div2D
2D Linear Evaluation LinEv2D
2D Polynomial Evaluation PolyEv2D
2D Scaling Scale2D
2D Quick Scaling QScale2D
2D Maximum & Minimum MaxMin2D
2D Sum of Elements Sum2D
2D Matrix Normalization Normal2D

Complex Operations
Complex Numbers

Complex Addition CxAdd
Complex Subtraction CxSub
Complex Multiplication CxMul
Complex Division CxDiv
Complex Reciprocal CxRecip
Complex Square Root CxSqrt
Complex Logarithm CxLog
Complex Natural Log CxLn
Complex Power CxPow
Complex Exponential CxExp
Rectangular to Polar ToPolar
Polar to Rectangular ToRect

Table 1-1. Functions in the Advanced Analysis Library Overview Function Tree (Continued)

Class/Panel Name Function Name
© National Instruments Corporation 1-3 LabWindows/CVI Advanced Analysis Library

Chapter 1 Advanced Analysis Library Overview
Complex Operations (continued)
1D Complex Operations

1D Complex Addition CxAdd1D
1D Complex Subtraction CxSub1D
1D Complex Multiplication CxMul1D
1D Complex Division CxDiv1D
1D Complex Linear Evaluation CxLinEv1D
1D Rectangular to Polar ToPolar1D
1D Polar to Rectangular ToRect1D

Signal Processing
Frequency Domain

FFT FFT
Inverse FFT InvFFT
Real Valued FFT ReFFT
Real Valued Inverse FFT ReInvFFT
Power Spectrum Spectrum
FHT FHT
Inverse FHT InvFHT
Cross Spectrum CrossSpectrum

Time Domain
Convolution Convolve
Correlation Correlate
Integration Integrate
Differentiate Difference
Pulse Parameters PulseParam
Decimate Decimate
Deconvolve Deconvolve
Unwrap Phase UnWrap1D

IIR Digital Filters
Cascade Filter Functions

Bessel Cascade Coeff Bessel_CascadeCoef
Butterworth Cascade Coeff Bw_CascadeCoef
Chebyshev Cascade Coeff Ch_CascadeCoef
Inv Chebyshev Cascade Coeff InvCh_CascadeCoef
Elliptic Cascade Coeffs Elp_CascadeCoef
IIR Cascade Filtering IIRCascadeFiltering
Filter Information Utilities

Allocate Filter Information AllocIIRFilterPtr
Reset Filter Information ResetIIRFilter
Free Filter Information FreeIIRFilterPtr
Cascade to Direct Coefficients CascadeToDirectCoef

One-Step Filter Functions
Lowpass Butterworth Bw_LPF
Highpass Butterworth Bw_HPF
Bandpass Butterworth Bw_BPF

Table 1-1. Functions in the Advanced Analysis Library Overview Function Tree (Continued)

Class/Panel Name Function Name
LabWindows/CVI Advanced Analysis Library 1-4 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview
Signal Processing (continued)
IIR Digital Filters (continued)

One-Step Filter Functions (continued)
Bandstop Butterworth Bw_BSF
Lowpass Chebyshev Ch_LPF
Highpass Chebyshev Ch_HPF
Bandpass Chebyshev Ch_BPF
Bandstop Chebyshev Ch_BSF
Lowpass Inverse Chebyshev InvCh_LPF
Highpass Inverse Chebyshev InvCh_HPF
Bandpass Inverse Chebyshev InvCh_BPF
Bandstop Inverse Chebyshev InvCh_BSF
Lowpass Elliptic Elp_LPF
Highpass Elliptic Elp_HPF
Bandpass Elliptic Elp_BPF
Bandstop Elliptic Elp_BSF

Old-Style Filter Functions
Bessell Coefficients Bessell_Coef
Butterworth Coefficients Bw_Coef
Chebyshev Coefficients Ch_Coef
Inverse Chebyshev Coefficients InvCh_Coef
Elliptic Coefficients Elp_Coef
IIR Filtering IIRFiltering

FIR Digital Filters
Lowpass Window Filters Wind_LPF
Highpass Window Filters Wind_HPF
Bandpass Window Filters Wind_BPF
Bandstop Window Filters Wind_BSF
Lowpass Kaiser Window Ksr_LPF
Highpass Kaiser Window Ksr_HPF
Bandpass Kaiser Window Ksr_BPF
Bandstop Kaiser Window Ksr_BSF
General Equi-Ripple FIR Equi_Ripple
Lowpass Equi-Ripple FIR EquiRpl_LPF
Highpass Equi-Ripple FIR EquiRpl_HPF
Bandpass Equi-Ripple FIR EquiRpl_BPF
Bandstop Equi-Ripple FIR EquiRpl_BSF
FIR Coefficients FIR_Coef

Windows
Triangular Window TriWin
Hanning Window HanWin
Hamming Window HamWin
Blackman Window BkmanWin
Kaiser Window KsrWin
Blackman-Harris Window BlkHarrisWin

Table 1-1. Functions in the Advanced Analysis Library Overview Function Tree (Continued)

Class/Panel Name Function Name
© National Instruments Corporation 1-5 LabWindows/CVI Advanced Analysis Library

Chapter 1 Advanced Analysis Library Overview
Signal Processing (continued)
Windows (continued)

Tapered Cosine Window CosTaperedWin
Exact Blackman Window ExBkmanWin
Exponential Window ExpWin
Flat Top Window FlatTopWin
Force Window ForceWin
General Cosine Window GenCosWin

Measurement
AC/DC Estimator ACDCEstimator
Amplitude/Phase Spectrum AmpPhaseSpectrum
Auto Power Spectrum AutoPowerSpectrum
Cross Power Spectrum CrossPowerSpectrum
Impulse Response ImpulseResponse
Network Functions NetworkFunctions
Power Frequency Estimate PowerFrequencyEstimate
Scaled Window ScaledWindow
Spectrum Unit Conversion SpectrumUnitConversion
Transfer Function TransferFunction
Total Harmonic Distortion HarmonicAnalyzer

Statistics
Basics

Mean Mean
Standard Deviation StdDev
Variance Variance
Root Mean Squared Value RMS
Moments about the Mean Moment
Median Median
Mode Mode
Histogram Histogram

Probability Distributions
Normal Distribution N_Dist
T-Distribution T_Dist
F-Distribution F_Dist
Chi-Square Distribution XX_Dist
Inv. Normal Distribution InvN_Dist
Inv. T-Distribution InvT_Dist
Inv. F-Distribution InvF_Dist
Inv. Chi-Square Dist. InvXX_Dist

Analysis of Variance
One-way ANOVA ANOVA1Way
Two-way ANOVA ANOVA2Way
Three-way ANOVA ANOVA3Way

Nonparametric Statistics
Contingency Table Contingency_Table

Table 1-1. Functions in the Advanced Analysis Library Overview Function Tree (Continued)

Class/Panel Name Function Name
LabWindows/CVI Advanced Analysis Library 1-6 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview
Curve Fitting
Linear Fit LinFit
Exponential Fit ExpFit
Polynomial Fit PolyFit
General Least Squares Fit GenLSFit
Non-Linear Fit NonLinearFit
Non-Linear Fit with Maximum Iterations NonLinearFitWithMaxIters
OldStyle Function

Gen Least Squares Fit Coeff GenLSFitCoef
Interpolation

Polynomial Interpolation PolyInterp
Rational Interpolation RatInterp
Spline Interpolation SpInterp
Spline Interpolant Spline

Vector & Matrix Algebra
Real Matrices

Create Special Matrix SpecialMatrix
Dot Product DotProduct
Transpose Transpose
Determinant Determinant
Determinant (General) GenDeterminant
Trace Trace
Invert Matrix InvMatrix
Invert Matrix (General) GenInvMatrix
Solution of Linear Equations LinEqs
Solution of Linear Eqs (General) GenLinEqs
Multiply Matrices MatrixMul
Outer Product OuterProduct
Rank MatrixRank
Norm MatrixNorm
Condition Number ConditionNumber
Eigenvalues & Eigenvectors (Symmetric)SymEigenValueVector
Eigenvalues & Eigenvectors (General) GenEigenValueVector
Singular Values of a Matrix SVDS
SVD Factorization SVD
QR Factorization QR
Cholesky Factorization Cholesky
PseudoInverse Matrix PseudoInverse
Test Positive Definiteness CheckPosDef
LU Decomposition LU
Forward Substitution ForwSub
Backward Substitution BackSub

Complex Matrices
Create Special Complex Matrix CxSpecialMatrix
Complex Dot Product CxDotProduct

Table 1-1. Functions in the Advanced Analysis Library Overview Function Tree (Continued)

Class/Panel Name Function Name
© National Instruments Corporation 1-7 LabWindows/CVI Advanced Analysis Library

Chapter 1 Advanced Analysis Library Overview
Class and Subclass Descriptions
• The Signal Generation function panels initialize arrays with predefined patterns.

• The Array Operations function panels perform arithmetic operations on 1D and
2D arrays.

– 1D Operations, a subclass of Array Operations, contains function panels that
perform 1D array arithmetic.

– 2D Operations, a subclass of Array Operations, contains function panels that
perform 2D array arithmetic.

Vector & Matrix Algebra (continued)
Complex Matrices (continued)

Complex Transpose CxTranspose
Complex Determinant CxDeterminant
Complex PseudoInverse Matrix CxPseudoInverse
Complex Trace CxTrace
Complex Invert Matrix CxGenInvMatrix
Solution of Complex Linear Eqs CxGenLinEqs
Complex Multiply Matrices CxMatrixMul
Complex Outer Product CxOuterProduct
Complex Rank CxMatrixRank
Complex Norm CxMatrixNorm
Complex Condition Number CxConditionNumber
Complex Eigenvalues & Eigenvectors CxEigenValueVector
Complex Singular Values CxSVDS
Complex SVD Factorization CxSVD
Complex QR Factorization CxQR
Complex Cholesky Factorization CxCholesky
Complex Test Positive Definite CxCheckPosDef
Complex LU Factorization CxLU

Additional Numerical Methods
Complex Polynomial Roots CxPolyRoots
Numeric Integration NumericIntegration
Peak Detector PeakDetector

Free Analysis Memory FreeAnalysisMem
Get Error String GetAnalysisErrorString

Table 1-1. Functions in the Advanced Analysis Library Overview Function Tree (Continued)

Class/Panel Name Function Name
LabWindows/CVI Advanced Analysis Library 1-8 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

hese
ss the

s that

ain,

 that
nd

rform

at

rth,

hat
 not
ple

e
 in

h as

mon

ns
tions.

form

at
• The Complex Operations function panels perform complex arithmetic operations. T
function panels can operate on complex scalars or 1D arrays. The functions proce
real and imaginary parts of complex numbers separately.

– Complex Numbers, a subclass of Complex Operations, contains function panel
perform scalar complex arithmetic.

– 1D Complex Operations, a subclass of Complex Operations, contains function
panels that perform complex arithmetic on 1D complex arrays.

• The Signal Processing function panels perform data analysis in the frequency dom
time domain, or by using digital filters.

– Frequency Domain, a subclass of Signal Processing, contains function panels
perform transformations between the time domain and the frequency domain a
that perform analysis in the frequency domain.

– Time Domain, a subclass of Signal Processing, contains function panels that pe
direct time series analysis of signals.

– IIR Digital Filters, a subclass of Signal Processing, contains function panels th
perform infinite impulse response (IIR) digital filtering on signals by mapping
analog specifications into digital specifications. This subclass contains Butterwo
Chebyshev, inverse Chebyshev, and elliptic filters.

– FIR Digital Filters, a subclass of Signal Processing, contains function panels t
perform the designs of finite impulse response (FIR) filters. These functions do
actually perform the digital filtering. This subclass contains window and equi-rip
FIR filters.

– Windows, a subclass of Signal Processing, contains function panels that creat
windows that are frequently used to smooth data and reduce truncation effects
data acquisition applications.

• The Measurement function panels perform spectrum analysis, using real units suc
hertz and seconds, and total harmonic distortion analysis.

• The Statistics function panels perform basic statistics functions.

– Basics, a subclass of Statistics, contains function panels that use various com
methods to describe a set of data.

– Probability Distributions, a subclass of Statistics, contains function panels that
operate as cumulative distribution functions from various probability distributio
and contains other function panels that operate as corresponding inverse func

– Analysis of Variance, a subclass of Statistics, contains function panels that per
various analysis of variance in various statistical models.

– Nonparametric Statistics, a subclass of Statistics, contains a function panel th
analyzes data without assuming that the data is normally distributed.
© National Instruments Corporation 1-9 LabWindows/CVI Advanced Analysis Library

Chapter 1 Advanced Analysis Library Overview

ues.

and

.

lex

eric
ns.

tively.
tion
.

your

input
u
mory.
te

 the
d
• The Curve Fitting function panels perform curve fitting using least squares techniq
Linear, exponential, polynomial, and nonlinear fits are available.

• The Interpolation function panels take a set of points at which a function is known
guess the value the function takes at a specific intermediate point.

• The Vector & Matrix Algebra function panels perform vector and matrix operations
Vectors and matrices are represented by 1D and 2D arrays, respectively.

– Real Matrices, a subclass of Vector & Matrix Algebra, contains functions that
operate on real-valued matrices and vectors.

– Complex Matrices, a subclass of Vector & Matrix Algebra, contains functions
that operate on matrices and vectors that contain complex numbers. The comp
numbers are represented in the form of a structure that the ComplexNum
typedef defines.

• The Additional Numerical Methods function panels perform operations such as num
integration and peak detection that are widely used in signal processing applicatio

The online help with each panel contains specific information about operating each
function panel.

Hints for Using Advanced Analysis Function Panels
With the analysis function panels, you can manipulate scalars and arrays of data interac
You might find it helpful to use the Advanced Analysis Library function panels in conjunc
with the User Interface Library functions panels to view the results of analysis routines
When using the Advanced Analysis Library function panels, remember the following:

• The computer on which you run LabWindows/CVI affects the processing speed of
the analysis functions. A numeric coprocessor, especially, increases the speed of
floating-point computations. If you are using an Analysis Library function panel and
nothing seems to happen for an unusually long time, remember the constraints of
hardware.

• Many analysis routines for arrays run in place. That is, the functions can store the
and output data in the same array. This point is important to keep in mind when yo
process large amounts of data. Large double-precision arrays consume a lot of me
If the results you want do not require that you keep the original array or intermedia
arrays of data, perform analysis operations in place where possible.

• The Interactive window maintains a record of generated code. If you forget to keep
code from a function panel, you can cut and paste code between the Interactive an
Program windows.
LabWindows/CVI Advanced Analysis Library 1-10 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

 the

turn

ring a

ation
urier

s
These
al
Reporting Analysis Errors
Each analysis function returns an integer error code. If the function executes properly,
function returns a zero; otherwise, the function returns an appropriate error value.

The return value corresponds to one of the enumeration values of the type that
AnalysisLibErrType declares in the header file analysis.h . The analysis functions are
declared in the header file with this return type so that the function panel controls for re
values display the symbolic name instead of the integer value of the error code. Decla
variable to be the type AnalysisLibErrType allows the Variables window to display its
value as a symbolic name instead of as an integer.

You can find a list of error codes in Appendix A, Error Codes.

About the Fast Fourier Transform (FFT)
The functions in the Frequency Domain subclass are based on the discrete implement
and optimization of the Fourier Transform integral. The functions obtain the Discrete Fo
Transform (DFT) of a complex sequence X that contains n elements using the following
formula:

 for

where Yi is the ith element of the DFT of X and

The DFT of X also results in a complex sequence Y of n elements. Similarly, the functions
obtain the Inverse Discrete Fourier Transform (IDFT) of a complex sequence Y that contains
n elements using the following formula:

 for

where Xi is the ith element of the IDFT of Y and

The discrete implementation of the DFT is a numerically intense process. However, it i
possible to implement a fast algorithm when the size of the sequence is a power of two.
algorithms are known as FFTs and can be found in many introductory texts about digit
signal processing (DSP).

Yi Xke

j– 2π ik
n

k 0=

n 1–

∑= i 0 1 … n 1–, , ,=

j 1–=

Xi
1
n
--- Yke

j 2π ik
n

k 0=

n 1–

∑= i 0 1 … n 1–, , ,=

j 1–=
© National Instruments Corporation 1-11 LabWindows/CVI Advanced Analysis Library

Chapter 1 Advanced Analysis Library Overview

 is
es
y of

ormat

FFT

s the

n the
The current algorithm implemented in the LabWindows/CVI Advanced Analysis Library
known as the Split-Radix algorithm. This algorithm is highly efficient because it minimiz
the number of multiplications and has the form of the Radix-4 algorithm and the efficienc
the Radix-8 algorithm. The resulting complex FFT sequence has the conventional DSP f
as described in the following paragraphs.

If there are n number of elements in the complex sequence and the output of the
is organized as follows:

DC component
Positive first harmonic
Positive second harmonic

 . .
 . .
 . .

Positive harmonic
Nyquist frequency
Negative harmonic

 . .
 . .
 . .

Negative second harmonic
Negative first harmonic

The following conventions and restrictions apply to the functions in the Frequency
Domain subclass:

• All arrays must be a power of two: for .

• The functions manipulate complex sequences using two arrays. One array contain
real elements. The other array contains the imaginary elements.

This manual uses the following notation to describe the FFT operations the functions i
Frequency Domain subclass perform:

• , the sequence Y is the FFT of the sequence X.

• , the sequence Y is the inverse FFT of the sequence X.

X is usually a complex array but can be treated as a real array.

k
n
2
---,=

Y0
Y1
Y2

Yk 1– k 1–
Yk
Yk 1+ k 1–

Yn 2–
Yn 1–

n 2m,= m 1 2 3 … 12, , , ,=

Y FFT X()=

Y FFT 1– X()=
LabWindows/CVI Advanced Analysis Library 1-12 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

l

me

rum
he
 with
as the

aks
om the
ral
sive.
About Windowing
Almost every application requires you to use finite length signals. This requires that
continuous signals be truncated, using a process called windowing.

The simplest window is a rectangular window. Because this window requires no specia
effort, it is commonly referred to as the no window option. Remember, however, that a
window always affects a discrete signal and its spectrum. Let xn be a digitized time-domain
waveform that has a finite length of n. wn is a window sequence of n points. The windowed
output is calculated as follows:

(1-1)

If X, Y, and W are the spectra of x, y, and w, respectively, the time-domain multiplication in
Equation (1-1) is equivalent to the frequency domain convolution shown as follows:

Convolving with the window spectrum always distorts the original signal spectrum in so
way. A window spectrum consists of a mainlobe and several sidelobes.

The mainlobe is the primary cause of lost frequency resolution. When two signal spect
lines are too close to each other, they might fall in the width of the mainlobe, causing t
output of the windowed signal spectrum to have only one spectrum line. Use a window
a narrower mainlobe to reduce the loss of frequency resolution. A rectangular window h
narrowest mainlobe, so it provides the best frequency resolution.

The sidelobes of a window function affect frequency leakage. A signal spectrum line le
into the adjacent spectrum if the sidelobes are large. Once again, the leakage results fr
convolution process. Select a window with relatively smaller sidelobes to reduce spect
leakage. Unfortunately, a narrower mainlobe and smaller sidelobes are mutually exclu

yi xi wi×=

Yk Xk Θ Wk=
© National Instruments Corporation 1-13 LabWindows/CVI Advanced Analysis Library

Chapter 1 Advanced Analysis Library Overview

s an

 the
see
ency

 way
ame
trical
For this reason, selecting a window function is application dependent. Figure 1-1 show
example of a windowed spectrum in the continuous case.

Figure 1-1. Windowed Spectrum in the Continuous Case

The original signal spectrum in Figure 1-1 is convolved with the window spectrum, and
output is a smeared version of the original signal spectrum. In Figure 1-1, you can still
four distinctive peaks from the original signal; but each peak is smeared, and the frequ
leakage effect is clear.

Window definitions used in National Instruments analysis libraries are designed in such a
that the window operations in the time domain are equivalent to the operations of the s
window in the frequency domain. To meet this requirement, the windows are not symme
in the time domain, that is:

 where N is the window length

Signal Spectrum Window Spectrum

Windowed Signal Spectrum

w0 wN 1 –≠
LabWindows/CVI Advanced Analysis Library 1-14 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

 the

in
ctly

n

ng or

:
ers
t offer

hase
 are
pling
igital

 other
However, the windows are usually symmetrical in the frequency domain. For example,
Hamming window definition uses the formula:

(1-2)

Other manufacturers might use a slightly different definition, such as:

(1-3)

The difference is small if N is large.

Equation (1-2) is not symmetrical in the time domain, but it ensures that the time doma
windowing is equivalent to the frequency domain windowing. If you want to have a perfe
symmetrical sequence in the time domain, you must write your own windowing functio
using Equation (1-3).

The choice of a window depends on the application. For most applications, the Hammi
Hanning windows deliver good performance.

About Digital Filters
There are two types of digital filters in the LabWindows/CVI Advanced Analysis Library
Finite Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters. FIR filt
have a linear phase response. IIR filters generally have a nonlinear phase response bu
much better amplitude response.

The choice of a particular type of filter depends on the application. If you want a linear p
response, choose one of the FIR filters. If performance and better amplitude response
more important, chose an IIR filter. No matter what type of filter you choose, enter a sam
frequency and other cutoff frequencies when you design your filter. You can design a d
filter using a normalized sampling frequency. The LabWindows/CVI Advanced Analysis
Library provides a sampling frequency parameter so that you do not need to normalize
frequencies.

wi 0.54 0.46
2πi
N

 cos–=

wi 0.54 0.46
2πi

N 1–

 cos–=
© National Instruments Corporation 1-15 LabWindows/CVI Advanced Analysis Library

Chapter 1 Advanced Analysis Library Overview

ng

are
ber

from
igger

to

 the

n
nse of
les

factor
lly
g
ting

pass,
FIR Filters
The FIR filter is a set of filter coefficients that alters the signal spectrum when convolvi
with the signal. Let ck, for be the filter coefficients, xN the input signal, and
yN the output in the following formula:

 when

LabWindows/CVI implements the formula using the convolution function Convolve .
The purpose of an FIR filter is to design the coefficients ck. Remember that an FIR filter
function does not actually perform filtering. You must subsequently call Convolve to
perform the filtering. The advantage of this process is that after you obtain the filter
coefficients, you can use them repeatedly without redesigning the filter.

If you have never used an FIR filter before, start with a window FIR filter. These filters
easy to design, though other techniques might design a better filter with the same num
of coefficients.

Use the windType parameter to choose the window type to use in a window FIR filter.
windType determines the amount of attenuation the window filter can achieve. It also
determines the transitional bandwidth of the window filter, which is the frequency range
the specified cutoff frequency to the point where the desired attenuation is obtained. A b
transitional bandwidth usually gives better attenuation. Use a Kaiser window FIR filter
choose windows that are not available fromwindType.

If you are experienced in using filters and you want to design an optimal FIR filter, use
LabWindows/CVI Advanced Analysis Library Equi_Ripple function. These filters are
based on the general Parks-McClellan algorithm, that, in turn, is based on an alternatio
theorem in the polynomial approximation. As the name suggests, the frequency respo
an Equi_Ripple filter has equal ripples within each specified frequency band. The ripp
can be different in different bands depending on the weighting factors.

You have to specify more parameters when you use Equi_Ripple filters. For each frequency
band, specify the starting and ending points, the amplitude response, and a weighting
associated with the amplitude response of that band. A weighting factor of one is usua
sufficient for all bands, but you can select different weighting factors. A bigger weightin
factor results in a smaller ripple in the corresponding frequency band; a smaller weigh
factor results in a larger ripple.

If you want to design an optimal FIR multiband filter, such as lowpass, highpass, band
and bandstop, but do not want to specify the weighting factor, use EquiRpl_LPF ,
EquiRpl_HPF , EquiRpl_BPF , and EquiRpl_BSF . These filters call Equi_Ripple
internally but have simplified input parameters.

k 0, 1, 2, . . . ,=

yi xi k– ck
k 0=

K 1–

∑= i 0 1 … N 1–, , ,=
LabWindows/CVI Advanced Analysis Library 1-16 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

ll
r

ed
 to
l to

tion
iven

r
Caution The Equi_Ripple filter design does not always converge. In some cases, it wi
fail and give erroneous results. It is extremely important that you verify the filte
design after you obtain the filter coefficients.

IIR Filters
Mathematically, an IIR digital filter assumes the following form:

 where ak and bk are the filter coefficients (1-4)

The current filter output yi depends on the current and previous values and previous
output . If , its effect on the subsequent points persists indefinitely. For these
reasons, these filters are called infinite impulse response filters.

Filters implemented directly using the structure Equation (1-4) defines are known as
direct-form IIR filters. Direct-form implementations are often sensitive to errors introduc
by coefficient quantization and by computational precision limits. Also, a filter designed
be stable can become unstable with increasing coefficient length, which is proportiona
filter order.

A less-sensitive structure can be obtained by breaking up the direct-form transfer func
into lower-order sections, or filter stages. The direct-form transfer function of the filter g
by Equation (1-4) (with) can be written as a ratio of z transforms, as follows:

(1-5)

By factoring Equation (1-5) into second-order sections, the transfer function of the filte
becomes a product of second-order filter functions:

where is the largest , and

!

yi
1
a0
----- bjxi j – ak yi k–

k 1=

Na 1–

∑–
j 0=

Nb 1–

∑

=

xi k–
yi k– yi 0≠

a0 1=

H z()
b0 b1z 1– … bNb 1– z

Nb 1–()–
+ ++

1 a1z 1– … aNa 1– z
Na 1–()–

+ ++
--=

H z()
b0k

b1k
z 1– b2k

z 2–++

1 a1k
z 1– a2k

z 2–++

k 1=

Ns

∏=

Ns
Na

2
------= integer

Na

2
------≤ Na Nb≥
© National Instruments Corporation 1-17 LabWindows/CVI Advanced Analysis Library

Chapter 1 Advanced Analysis Library Overview

n in

nternal

 in the

s can

 are a
-order
ions:
This new filter structure can be described as a cascade of second-order filters, as show
Figure 1-2.

Figure 1-2. Cascaded Filter Stages

Each individual stage is implemented using the direct-form II filter structure because it
requires a minimum number of arithmetic operations and a minimum number of delay
elements, or internal filter states. Each stage has one input, one output, and two past i
states (and).

If n is the number of samples in the input sequence, the filtering operation proceeds as
following equations:

 for

 for

for each sample

For lowpass and highpass filters with a single cutoff frequency, second-order filter stage
be designed directly. The overall IIR lowpass or highpass filter contains cascaded
second-order filters.

For bandpass and bandstop filters with two cutoff frequencies, fourth-order filter stages
more natural form. The overall IIR bandpass or bandstop filter contains cascaded fourth
filters. The filtering operation for fourth-order stages proceeds as in the following equat

for

stage 1x[i] stage 2 stage NS y[i]

sk i 1–[] sk i 2–[]

y0 i[] x i[]=

sk i[] yk 1– i 1–[] a1k
sk i 1–[]– a2k

sk i 2–[]–= k 1 2 … Ns, , ,=

yk i[] b0k
sk i[] b1k

sk i 1–[] b2k
sk i 2–[]+ += k 1 2 … Ns, , ,=

y i[] yNs
i[]=

i 0 1 2 … n 1–, , , ,=

y0 i[] x i[]=

sk i[] yk 1– i 1–[] a1k
sk i 1–[]– a2k

sk i 2–[]– a3k
sk i 3–[]– a4k

sk i 4–[]–=

k 1 2 … Ns, , ,=
LabWindows/CVI Advanced Analysis Library 1-18 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

uency
s

e
and

t
nd.

sition

main
rk

rtion
for

Notice that in the case of fourth-order filter stages, .

The IIR filters provided in the LabWindows/CVI Advanced Analysis Library are derived
from analog filters. There are four major types of IIR filters:

• Butterworth filters

• Chebyshev filters

• Inverse Chebyshev filters

• Elliptic filters

Lowpass, highpass, bandpass, and bandstop filters exist for each type of filter. The freq
response of a Butterworth filter is characterized by a smooth response at all frequencie
and a monotonic decrease from the specified cut-off frequencies. Butterworth filters ar
maximally flat in the passband and zero in the stopband. The rolloff between the passb
and stopband is slow, so a lower-order Butterworth filter does not provide a good
approximation of an ideal filter.

Chebyshev filters have equal ripples in the passband and a monotonically decreasing
magnitude response in the stopband. These filters have much sharper rolloffs than
Butterworth filters. The inverse Chebyshev filters are similar to Chebyshev filters excep
that the ripple occurs in the stopband and the frequency response is flat in the passba

If ripples are allowable in both the passband and the stopband, use elliptic filters.
Elliptic filters have the sharpest rolloffs for the same order compared with Butterworth
or Chebyshev filters.

About Measurement Functions
Measurement functions perform DFT-based and FFT-based analysis with signal acqui
for frequency measurement applications as seen in typical frequency measurement
instruments such as dynamic signal analyzers.

Several measurement functions perform commonly used time domain-to-frequency do
transformations such as amplitude and phase spectrum, signal power spectrum, netwo
transfer function, and so on. Other supportive measurement functions perform scaled
time-domain windowing and power and frequency estimation, and total harmonic disto
analysis.

yk i[] b0k
sk i[] b1k

sk i 1–[] b2k
sk i 2–[] b3k

sk i 3–[] b4k
sk i 4–[]+ + + +=

k 1 2 … Ns, , ,=

y i[] yNs
i[]=

Ns
Na 1+

4
---------------=
© National Instruments Corporation 1-19 LabWindows/CVI Advanced Analysis Library

Chapter 1 Advanced Analysis Library Overview

ntent
he
FT

erage
egory.

e the
lysis

diate

xis

its

and
You can use the measurement functions for the following applications:

• Spectrum analysis applications

– Amplitude and phase spectrum

– Power spectrum

– Scaled time-domain window

– Power and frequency estimate

• Network, or frequency response, and dual-channel analysis applications

– Transfer function

– Impulse response function

– Network functions, including coherence

– Cross power spectrum

The DFT, FFT, and power spectrum functions are useful for measuring the frequency co
of stationary or transient signals. The FFT provides the average frequency content of t
signal over the entire time that the signal was acquired. For this reason, you use the F
mostly for stationary signal analysis, when the signal is not significantly changing in
frequency content over the time that the signal is acquired, or when you want only the av
energy at each frequency line. A large class of measurement problems falls in this cat
For measuring frequency information that changes during the acquisition, use joint
time-frequency analysis.

The measurement functions are built on top of the signal processing functions and hav
following characteristics that model the behavior of traditional benchtop frequency ana
instruments:

• Assumed real-world, time-domain signal input.

• Outputs in magnitude and phase, scaled in units where appropriate, ready for imme
graphing.

• Single-sided spectrums from DC to , where fs is the sampling frequency.

• Sampling period-to-frequency interval conversion for graphing with appropriate x-a
units, in hertz.

• Corrections for the windows being used applied where appropriate.

• Scaled windows; each window gives same peak spectrum amplitude result within
amplitude accuracy constraints.

• Viewing of power or amplitude spectrum in various unit formats, including decibels
spectral density units, (), and so on.

fs
2

V2 Hz V Hz⁄,⁄
LabWindows/CVI Advanced Analysis Library 1-20 © National Instruments Corporation

Chapter 1 Advanced Analysis Library Overview

res

ve

la

tion,
se
n

e the
r this
ch as
e the
About Curve Fitting Functions
The algorithm used to find the best curve fit in the Curve Fitting class is the Least Squa
method. The purpose of the algorithm is to find the curve coefficients a, which minimize the
squared error e(a) in the following formula:

 where f(Xi, a) is the function that represents the desired cur

You can find the coefficient a by solving the linear system of equations the following formu
generates:

Given a set of n sample points (x, y) represented by the sequences X and Y, the curve-fitting
functions determine the coefficients that best represent the data. The best fit Z is an array of
expected values given the coefficients and the X set of values. Thus, you can express Z as a
function of X and the following coefficients:

When you establish the best fit values, you can obtain the mean squared error (mse) by
applying the following formula:

About Vector & Matrix Algebra Functions
The functions in the Vector & Matrix Algebra class perform operations such as multiplica
transposition, and outer product calculation on 2D arrays or matrices. You can use the
functions to calculate matrix properties, such as determinant, rank, norm, and conditio
number.

Many applications require you to solve a linear system of equations and/or to determin
eigenvalues and eigenvectors of a matrix. This class contains functions you can use fo
purpose and functions that you can use to calculate different types of factorizations, su
Cholesky factorization, QR factorization, and Singular Value Decomposition. You can us
functions in this class to calculate special types of matrices, such as Toeplitz matrix,
Vandermonde matrix, and Companion matrix.

e a() Yi f Xi a,()–
i

∑ 2
=

∂
∂a
------e a() 0=

Z f X a,()=

mse
Zi Yi–()2

n

i 0=

n 1–

∑=
© National Instruments Corporation 1-21 LabWindows/CVI Advanced Analysis Library

© National Instruments Corporation 2-1 LabWindows/CVI Advance
2

VI
Advanced Analysis Library
Function Reference

This chapter contains a brief explanation of each of the functions in the LabWindows/C
Advanced Analysis Library in alphabetical order.
d Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Abs1D

,
Abs1D
int status = Abs1D (double x[], int n, double y[]);

Purpose
Finds the absolute value of the x input array. Abs1D can perform the operation in place; that is
x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

y double-precision array Absolute value of input array.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-2 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ACDCEstimator

the

ACDCEstimator
int status = ACDCEstimator (double x[], int n, double *acEstimate,

double *dcEstimate);

Purpose
Calculates an estimation of the AC and DC contents of the input signal. x is the input signal,
usually in volts.

acEstimate is the estimate of the input signal AC content in volts, root-mean-square, if
input signal is in volts.

dcEstimate is the estimate of the input signal DC content in volts, if the input signal is
in volts.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Contains the time-domain signal, usually in
volts. This array must contain at least three
cycles of the signal for a valid estimate.

n integer Number of elements in the input array.

Name Type Description

acEstimate double-precision Contains the estimate of the AC level of the
input signal in volts, root-mean-square, if
the input signal is volts.

dcEstimate double-precision Contains the estimate of the DC level of the
input signal in the same units as the
input signal.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-3 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Add1D
Add1D
int status = Add1D (double x[], double y[], int n, double z[]);

Purpose
Adds 1D arrays. Add1D obtains the ith element of the output array using the following
formula:

Add1D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

y double-precision array Input array.

n integer Number of elements to add.

Name Type Description

z double-precision array Result array.

Name Type Description

status integer Refer to Appendix A for error codes.

zi xi yi+=
LabWindows/CVI Advanced Analysis Library 2-4 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Add2D
Add2D
int status = Add2D (void *x, void *y, int n, int m, void *z);

Purpose
Adds 2D arrays. Add2D obtains the (i, j)th element of the output array using the following
formula:

Add2D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision
2D array

Input array.

y double-precision
2D array

Input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

z double-precision
2D array

Result array.

Name Type Description

status integer Refer to Appendix A for error codes.

zi j, xi j, yi j,+=
© National Instruments Corporation 2-5 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — AllocIIRFilterPtr

 the
t
AllocIIRFilterPtr
IIRFilterPtr filterInformation = AllocIIRFilterPtr (int type, int order);

Purpose
Allocates and initializes the filterInformation structure. Returns a pointer to the filter
structure for use with the IIR cascade filter coefficient design calls.

You input the type of the filter, such as lowpass, highpass, bandpass, or bandstop, and
order. AllocIIRFilterPtr allocates the filter structure as well as the internal coefficien
arrays and internal filter state array.

Parameters
Input

Return Value

Name Type Description

type integer Controls the filter type of IIR filter
coefficients.
lowpass = 0 (default)
highpass = 1
bandpass = 2

bandstop = 3

order integer Specifies the order of the IIR filter.
The default value is 3.

Name Type Description

filterInformation IIRFilterPtr Pointer to the filter structure. When an error
occurs, filterInformation is zero.
LabWindows/CVI Advanced Analysis Library 2-6 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — AllocIIRFilterPtr

nd

Parameter Discussion

filterInformation is the pointer to the filter structure that contains the filter coefficients a
the internal filter information. Call this function to allocate filterInformation before you call
one of the cascade IIR filter design functions.

The definition of the filter structure is as follows:

typedef struct {

 intnum type; /* type of filter (lp, hp, bp, bs) */

 intnum order /* order of filter */

 intnum reset; /* 0 - don't reset, 1 - reset */

 intnum na; /* number of a coefficients */

 floatnum *a; /* pointer to a coefficients */

 intnum nb; /* number of b coefficients */

 floatnum *b; /* pointer to b coefficients */

 intnum ns; /* number of internal states */

 floatnum *s; /* pointer to internal state array */

 } *IIRFilterPtr;
© National Instruments Corporation 2-7 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — AmpPhaseSpectrum

al,

s

AmpPhaseSpectrum
int status = AmpPhaseSpectrum (double x[], int n, int unwrap, double dt,

double ampSpectrum[], double phaseSpectrum[],
double *df);

Purpose
Calculates the single-sided, scaled amplitude and phase spectra of a time-domain signX.
AmpPhaseSpectrum calculates the amplitude spectrum as

and converts it to single-sided form. AmpPhaseSpectrum calculates the phase spectrum a

and converts it to single-sided form.

Parameters
Input

Name Type Description

x double-precision array Contains the time-domain signal.

n integer Number of elements in the input array.
n must be a power of 2.

unwrap integer Controls the unwrapping of the phase
spectrum.
Valid values:
1 = enable phase unwrapping
0 = disable phase unwrapping

dt double-precision Sampling period of the time-domain signal,
usually in seconds.

, where fs is the sampling
frequency of the time-domain signal.

FFT X()
n

phase FFTX()()

π– phase +π≤≤()

dt 1 fs⁄=
LabWindows/CVI Advanced Analysis Library 2-8 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — AmpPhaseSpectrum

Output

Return Value

Name Type Description

ampSpectrum double-precision array Single-sided amplitude spectrum
magnitude in volts, root-mean-square, if the
input signal is in volts. If the input signal is
not in volts, the results are in input signal
units, root-mean-square. This array must be
at least elements long.

phaseSpectrum double-precision array Single-sided phase spectrum in radians.
This array must be at least
elements long.

df double-precision Points to the frequency interval, in hertz, if
dt is in seconds.

Name Type Description

status integer Refer to Appendix A for error codes.

n 2⁄

n 2⁄

df 1 n dt×()⁄=
© National Instruments Corporation 2-9 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA1Way

, with
A) in

has an
ANOVA1Way
int status = ANOVA1Way (double y[], int level[], int n, int k, double *ssa,

double *msa, double *f, double *sig, double *sse,
double *mse, double *tss);

Purpose
Takes an array of experimental observations you make at various levels of some factor
at least one observation per factor, and performs a one-way analysis of variance (ANOV
the fixed effect model.

The one-way analysis of variance is a test to determine whether the level of the factor
effect on the experimental outcome.

Parameters
Input

Output

Name Type Description

y double-precision array Experimental observations.

level integer array The ith element tells in what level of the
factor the ith observation falls.

n integer Total number of observations.

k integer Total number of levels of the factor.

Name Type Description

ssa double-precision Sum of squares as a result of the factor.

msa double-precision Mean square as a result of the factor.

f double-precision Calculated F-value.

sig double-precision Level of significance at which you must
reject the null hypothesis.

sse double-precision Sum of squares as a result of random
fluctuation.

mse double-precision Mean square as a result of random
fluctuation.

tss double-precision Total sum of squares.
LabWindows/CVI Advanced Analysis Library 2-10 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA1Way

ith
e
ou

Return Value

Using This Function
Factors and Levels
A factor is a way of categorizing data. You can categorize data into levels, beginning w
level 0. For example, if you perform a measurement on individuals, such as counting th
number of sit-ups they can perform, one such categorization method is age. For age, y
might have three levels, as shown in Table 2-1.

General Method
Break up the total sum of squares tss, a measure of the total variation of the data from the
overall population mean, into component sums of squares, which might be attributed to
different sources.

You now have:

Divide by appropriate numbers to obtain the averages msa and mse. If the factor causes much
variation, msa will be larger relative to mse. The ratio f also will be larger relative to mse.

If the null hypothesis is true, the ratio f is taken from an F-distribution with and
degrees of freedom, from which you can calculate probabilities. Given a particular f, sig is the
probability that sampling from this distribution results in a value larger thanf.

Name Type Description

status integer Refer to Appendix A for error codes.

Table 2-1. Age Levels

Level Ages

0 6 years to 10 years

1 11 years to 15 years

2 16 years to 20 years

where ssa is a measure of variation that is attributed to the factor

sse is a measure of variation that is attributed to random fluctuation

tss ssa sse+=

k 1– n k–
© National Instruments Corporation 2-11 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA1Way

forms

ith

ental

 to
all,
u are
Statistical Model
ANOVA1Way expresses each experimental outcome as the sum of three parts while it per
the analysis of variance. Let yi,m be the mth observation from the ith level. Each observation
is written as:

Assumptions
Assume that the populations of measurements at each level are normally distributed w
mean and variance . Assume that the means sum to zero. Finally, assume that for
each i and m, is normally distributed with mean 0 and variance .

Hypothesis
Test the null hypothesis that for , where k is the total number of
levels. In other words, assume from the start that the levels have no effect on the experim
outcome, then look for evidence to the contrary.

Testing the Hypothesis
ANOVA1Way generates a number f so that if the hypothesis is true, that number is from an
F-distribution with and degrees of freedom. ANOVA1Way also calculates the
probability that a number taken from this F-distribution is larger than f. This is the output
parameter sig:

 where x is from

Use the probability sig to determine when to reject the hypothesis by choosing a level of
significance for the hypothesis. The level of significance determines how likely you are
reject the hypothesis when it is in fact true. Thus, the level of significance should be sm
for example, 0.05. Remember that the smaller the level of significance, the less likely yo
to reject the hypothesis.

Reject the hypothesis when the output parameter sig is less than the level of significance
you choose.

where is a standard effect

 is the effect of the ith level of the factor

 is a random fluctuation

yi m, µ αi εi m,+ +=

µ
αi

εi m,

αi σA
2 αi

εi m, σA
2

αi 0= i 0 1 … k 1–, , ,=

k 1– n k–

sig prob x f>()= F k 1 n k–,–()
LabWindows/CVI Advanced Analysis Library 2-12 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA1Way
Formulas
Let yi, m be the mth observation at the ith level for and

Let

Then:

 where f is from an F-distribution with and degrees of freedom

m 0 1 … ni, , ,= i 0 1 … k., , ,=

ni the number of observations at the i th level.=

Yi
1
ni
---- yi m,

m 0=

ni 1–

∑=

Ym
1
k
--- yi m,

i 0=

k 1–

∑=

Y
1
n
--- yi m,

m 0=

ni 1–

∑
i 0=

k 1–

∑=

T n Y×=

ssa
Yi

2

ni
----- Y2

n
-----–

i 0=

k

∑=

mse ssa
k 1–
-----------=

sse yi m,
2 Yi

2

ni

i 0=

k

∑–
m 0=

ni 1–

∑
i 0=

k 1–

∑=

mse
sse

n k–
-----------=

tss yi m,
2 Y2

n
-----–

m 0=

ni 1–

∑
i 0=

k 1–

∑=

f msa
mse
----------= k 1– n k–
© National Instruments Corporation 2-13 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA1Way

 of a

 plot

Example
Suppose that researchers want to know whether the amount of rainfall affects the yield
crop. The factor, rainfall, is divided into three levels () as shown in Table 2-2.

The researchers set up 10 plots in various geographical locations chosen so that each
receives a different amount of rainfall. Table 2-3 shows their results.

To perform a one-way analysis using ANOVA1Way, you store all the numbers of bushels in a
double-precision array y of size 10. The integer array level records the levels in which
observations were made. For any particular i, you must set these arrays such that yi is the
number of bushels a plot produces in the ith level. For example:

are valid combinations. Therefore, you can set up the input arrays y and level in this example
for ANOVA1Way as follows:

Table 2-2. Rainfall Levels

Level Rainfall (Factor)

0 2 inches

1 3 inches

2 4 inches

Table 2-3. Plot Production

Level
Bushels Produced

from Each Plot

0 128 122 126 124

1 140 141 143

2 120 118 123

k 3=

leveli 0=

yi 128 122 126 or 124, , ,=

y 128 122 126 124 140 141 143 120 118 123, , , , , , , , ,=

level 0 0 0 0 1 1 1 2 2 2, , , , , , , , ,=
LabWindows/CVI Advanced Analysis Library 2-14 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA1Way

st
e
Running the code in the following example produces:

For a level of significance such as 0.05, the ANOVA1Way results show that the researchers mu
reject the hypothesis that the rainfall has no effect on the crop yield. In other words, th
rainfall does affect the crop yield.

Example
double y[10], ssa, msa, f, sig, sse, mse, tss;

int level[10];

int k;

int status;

k = 3; /* three levels for rainfall */

/* Read in recorded data y(10), level[10]. */

status = ANOVA1Way(y, level, 10, k, &ssa, &msa, &f, &sig, &sse, &mse,

&tss);

sig 0.0000239=
© National Instruments Corporation 2-15 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way

xed

 a

ANOVA2Way
int status = ANOVA2Way (double y[], int levelA[], int levelB[], int N,

int L, int a, int b, void *info, double *sigA,
double *sigB, double *sigAB);

Purpose
Takes an array of experimental observations made at various levels of two factors and
performs a two-way analysis of variance in any of the following models:

• Model 1: Fixed effects with no interaction and one observation per cell. per
specified levels a and b of the factors A and B, respectively.

• Model 2: Fixed effects with interaction and observations per cell.

• Model 3: Either of the mixed-effects models, where one factor is taken to have a fi
effect but the other is taken to have a random effect, with interaction and
observations per cell.

• Model 4: Random effects with interaction and observations per cell.

Any ANOVA looks for evidence that the factors, or interactions among the factors, have
significant effect on experimental outcomes. The method for finding significance varies
among models.

Parameters
Input

Name Type Description

y double-precision array Array of experimental data of
 elements.

levelA integer array The ith element tells in what level of
factor A the ith observation falls.

levelB integer array The ith element tells in what level of
factor B the ith observation falls.

N integer Total number of observations.

L integer Number of observations per cell.

a integer Number of levels in factor A; negative if
A is a random effect.

b integer Number of levels in factor B; negative if
B is a random effect.

L 1=

L 1>

L 1>

L 1>

N a b× L×=
LabWindows/CVI Advanced Analysis Library 2-16 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way
Output

Return Value

Name Type Description

info double-precision
2D array

A 4-by-4 matrix as follows:

where ss designates sums of squares,
dof designates degrees of freedom of ss,
ms designates mean squares, and
f designates F-distributions, depending on
the statistical model.

sigA double-precision Level of significance at which you must
reject hypothesis A.

sigB double-precision Level of significance at which you must
reject hypothesis B.

sigAB double-precision Level of significance at which you must
reject hypothesis AB.

Name Type Description

status integer Refer to Appendix A for error codes.

ssa dofa msa fa

ssb dofb msb fb

ssab dofab msab fab

sse dofe mse0.0
© National Instruments Corporation 2-17 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way

ith
e
ou

 the

s of
l-eyed
 each

 want
d at

nt to
Using This Function
Factors, Levels, and Cells
A factor is a way of categorizing data. You can categorize data into levels, beginning w
level 0. For example, if you perform a measurement on individuals, such as counting th
number of sit-ups they can perform, one such categorization method is age. For age, y
might have three levels, as shown in Table 2-4.

Another possible factor is eye color, with the levels shown in Table 2-5.

In this example, an analysis of variance seeks evidence that the ages and eye color of
subjects have an effect on the number of sit-ups they perform.

A cell of data consists of all those experimental observations that fall in particular level
the two factors. In this instance, a cell might consist of those observations made on haze
individuals between 11 years and 15 years old. The number of observations that fall in
cell must be a constant number L that does not vary between cells.

Random and Fixed Effects
A factor is taken as a random effect when the factor has a large population of levels you
to draw conclusions about, but that you cannot sample at all levels. Levels are sample
random in the hope of generalizing about all levels.

A factor is taken as a fixed effect when you can sample the factor from all levels you wa
draw conclusions about.

Table 2-4. Age Levels

Level Age

0 6 years to 10 years

1 11 years to 15 years

2 16 years to 20 years

Table 2-5. Eye Color Levels

Level Eye Color

0 blue

1 brown

2 green

3 hazel
LabWindows/CVI Advanced Analysis Library 2-18 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way

ly.

nent

f

tically
e
The input parameters a and b represent the number of levels in factors A and B, respective
If factor A is random, set a to a negative value. If factor B is random, set b to a negative value.
If only one observation per cell exists, both a and b must be positive. Use model 1 as
previously described.

General Method
Each of the previous models breaks up the total sum of squares (tss), which is a measure of
the total variation of the data from the overall population mean, into a number of compo
sums of squares. In model 1:

whereas in models 2 through 4:

Each component of the sums is a measure of variation attributed to a certain factor or
interaction among the factors. The component ssa is a measure of the variation as a result o
factor A; ssb is a measure of the variation as a result of factor B; ssab is a measure of the
variation as a result of the interaction between factors A and B; and sse is a measure of the
variation as a result of random fluctuation. Notice that there is no ssab term with model 1.
Thus, no interaction exists.

If factor A has a strong effect on the experimental observations, msa is relatively large.
You can look at specific ratios of these averages because you know how they are statis
distributed. You can therefore determine how likely it is that factor A is as relatively larg
as it is.

Statistical Model
Let yp, q, r be the r th observation at the pth and qth levels of A and B, respectively, where

.

In model 1, express each observation as the sum of four components so that:

where represents a standard effect present in each observation

 represents the effect of the pth level of factor A

 represents the effect of the qth level of factor B

 is a random fluctuation

tss ssa ssb sse+ +=

tss ssa ssb ssab sse+ + +=

r 0 1 … L 1–, , ,=

yp q r, , µ αp βq εp q r, ,+ + +=

µ
αp

βq

εp q r, ,
© National Instruments Corporation 2-19 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way

t:

h level
f
o zero.

s a
gous

y

mean

ction
re no
 are
In models 2 through 4, express each observation as the sum of five components so tha

Assumptions
• Assume that for each p, q, and r, is normally distributed with mean 0 and

variance

• If a factor such as A is fixed, assume that the populations of measurements at eac
are normally distributed with mean and variance . All the populations at each o
the levels have the same variance. In addition, assume that all the means sum t
Make an analogous assumption for B.

• If a factor such as A is random, assume that the effect of the level of A itself, , i
random variable normally distributed with mean 0 and variance . Make an analo
assumption for B.

• If all the factors, such as A and B, associated with the effect of an interaction
are fixed, assume that the populations of measurements at each level are normall
distributed with mean and variance . For any fixed p, the means
sum to zero when summing over all q. Similarly, for any fixed q the means sum
to zero when summing over all p.

• If any of the factors, such as A and B, associated with the effect of an interaction
are random, assume that the effect is a random variable normally distributed with
0 and variance . If A is fixed but B is random, assume also that for any fixed q, the

 means sum to zero when summing over all p. Similarly, if B is fixed but A is
random, assume also that for any fixed p, the means sum to zero when summing
over all q.

• Assume that all effects taken to random variables are independent.

Hypotheses
Each of the following hypotheses are different ways of stating that a factor or an intera
among factors has no effect on experimental outcomes. Start by assuming that there a
effects and then seek evidence to contradict these assumptions. The three hypotheses
as follows:

where represents a standard effect present in each observation

 represents the effect of the pth level of factor A

 represents the effect of the qth level of factor B

 is a random fluctuation

 represents the effect of the interaction between the pth level of factor A and
the qth level of factor B

yp q r, , µ αp βq αβ()p q, εp q r, ,+ + + +=

µ
αp

βq

εp q r, ,

αβ()p q,

εp q r, ,
σe

2.

αp σA
2

αp

αp
σA

2

αβ()p q,

αβ()p q, σAB
2 αβ()p q,

αβ()p q,

αβ()p q,

σAB
2

αβ()p q,
αβ()p q,
LabWindows/CVI Advanced Analysis Library 2-20 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way

ere

t

 A
n
ue.
n is

level
true.

aller

, the
• For hypothesis A, for all levels of p if factor A is fixed; if factor A
is random.

• For hypothesis B, for all levels of q if factor B is fixed; if factor B
is random.

• For hypothesis AB, for all levels of p and q if factors A and B are fixed;
 if either factor A or factor B is random. This does not apply to model 1, wh

no interaction exists and the associated output parameters are superfluous.

Testing the Hypotheses
For each hypothesis, ANOVA2Way generates a number so that if the hypothesis is true, tha
number is from a particular F-distribution.

For example, in model 1, , associated with hypothesis A, is from an
F-distribution with and degrees of freedom, given that hypothesis
is true. In models 2 through 4, , associated with hypothesis A, is from a
F-distribution with and degrees of freedom, given that hypothesis A is tr
ANOVA2Way calculates the probability that a number taken from a particular F-distributio
larger than the F-value. For example:

 where X is from

Use the probabilities sigA, sigB, and sigAB to determine when to reject the associated
hypotheses A, B, and AB by choosing a level of significance for each hypothesis. The
of significance determines how likely you are to reject the hypothesis when it is in fact
Thus, the level of significance should be small, for example, 0.05. Remember that the sm
the level of significance, the less likely you are to reject the hypothesis.

Reject a particular hypothesis when the associated output parameter sigA, sigB, or sigAB is
less than the level of significance you chose for that hypothesis. If A is a random effect
chosen level of significance is 0.05, and sigA = 0.03, you must reject the hypothesis that

 and conclude that factor A has an effect on the experimental observations.

Formulas
Let yp, q, r be the r th observation at the pth and qth levels of A and B, respectively, where

.

Let:

ap 0= σA
2 0=

βq 0= σB
2 0=

αβ()p q, 0=
σAB

2 0=

fa msa mse⁄=
a 1– a 1–() b 1–()×

fa msa mse⁄=
a 1– ab L 1–()

sigA prob X fa>()= F a 1 a 1–() b 1–(),–()

σA
2 0=

r 0 1 … L 1–, , ,=

aa a=

bb b=
© National Instruments Corporation 2-21 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way
T = the total sum of all observations:

Then:

Tp q, yp q r, ,
r 0=

L 1–

∑=

Tp Tp q,
q 0=

bb 1–

∑=

Tq Tp q,
p 0=

aa 1–

∑=

A
Tp

2

bb L×

p 0=

aa 1–

∑=

B
Tq

2

aa L×

q 0=

bb 1–

∑=

S
T

p q
2,

L

q 0=

bb 1–

∑
p 0=

aa 1–

∑=

CF
T2

aa bb× L×
----------------------------=

ssa A CF–=

msa ssa
aa 1–
--------------- ssa

dofa
-----------= =

ssb B CF–=

msb
ssb

bb 1–
--------------- ssb

dofb
-----------= =

ssab S A– B– CF–=
LabWindows/CVI Advanced Analysis Library 2-22 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way
If:

assume that f is from an F-distribution with and degrees of freedom.

msab ssab
a 1–() b 1–()

---------------------------------- ssab
dofab
---------------= =

sse T S–=

mse
sse

aa bb× L 1–()×
-- sse

dofe
-----------= =

fa

msa
mse
---------- if B is fixed

msa
msab
------------- if B is random

=

fb

msb
mse
---------- if A is fixed

msb
msab
------------- if A is random

=

fab
msab
mse

-------------=

f
ms1

ms2
---------=

ms1
ss1

dof1
----------=

ms2
ss2

dof2
----------=

dof1 dof2
© National Instruments Corporation 2-23 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way

into

 be
orded as

ots fall
 crop
sults.
Example
Suppose that researchers want to know how the amount of rainfall and the average
temperature affect the yield of a crop. Each factor, rainfall and temperature, is divided
three levels as shown in Table 2-6 and Table 2-7.

A particular plot planted with the crop might appear in any one of the nine different
combinations of these levels with the two factors. For example, one combination might
2 inches of rain and an average temperature between 76 degrees and 80 degrees, rec
(0,0). Call these combinations cells.

The researchers set up 18 plots in various geographical locations chosen so that two pl
in each of the nine cells. To measure the productivity of a particular plot, they record the
production. Let rainfall be factor A and temperature be factor B. Table 2-8 shows their re

Table 2-6. Rainfall Levels

Level
Rainfall

 (Factor A)

0 2 inches

1 3 inches

2 4 inches

Table 2-7. Temperature Levels

Level
Temperature

(Factor B)

0 76–80 degrees

1 81–85 degrees

2 86–90 degrees

Table 2-8. Plot Production

(A, B)
Bushels Produced
 from Each Plot

(0, 0) 128 122

(0, 1) 113 108

(0, 2) 116 116

(1, 0) 132 129
LabWindows/CVI Advanced Analysis Library 2-24 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way

effect
icant

23
To perform a two-way analysis of variance in the fixed-effect model using ANOVA2Way, you
store all the numbers of bushels in a double-precision array y of size 18. The integer arrays
levelA and levelB record the cells in which observations were made. For any particular i, you
set these arrays such that yi is the number of bushels a plot produces in the (levelAi, levelBi)
cell. For example:

are valid combinations. Therefore, you can set up the input arrays y, levelA, and levelB in this
example for ANOVA2Way as follows:

Running the code in the following example produces:

For a level of significance such as 0.05, the ANOVA2Way results show that the researchers
cannot reject the hypotheses that the combination of rainfall and temperature has any
on the crop yield. In other words, the combination of rainfall and temperature has a signif
effect on crop yield.

(1, 1) 119 121

(1, 2) 126 113

(2, 0) 118 114

(2, 1) 141 133

(2, 2) 121 123

Table 2-8. Plot Production (Continued)

(A, B)
Bushels Produced
 from Each Plot

levelAi levelBi,() 0 1,()=

yi 113 or 108=

y 128 122 113 108 116 132 129 119 121 126 113 118 114 141 133 121 1, , , , , , , , , , , , , , , ,=

levelA 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2, , , , , , , , , , , , , , , , ,=

levelB 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2, , , , , , , , , , , , , , , , ,=

sigA 0.026=

sigB 0.203=

sigAB 0.0018=
© National Instruments Corporation 2-25 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA2Way
Example
double y[18], sigA, sigB, sigAB, info[4][4];

int levelA[18], levelB[18];

int L, a, b;

int status;

L = 2; /* two observations per cell */

a = 3; /* three levels for factor A, Rainfall */

b = 3; /* three levels for factor B, Temperature */

/* Read in recorded data y[18], levelA[18], levelB[18]. */

status = ANOVA2Way(y, levelA, levelB, 18, L, a, b, info, &sigA,

&sigB, &sigAB);
LabWindows/CVI Advanced Analysis Library 2-26 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way

d

have
ction

 a

ANOVA3Way
int status = ANOVA3Way (double y[], int levelA[], int levelB[], int levelC[],

int N, int L, int a, int b, int c, void *info,
double *sigA, double *sigB, double *sigC,
double *sigAB, double *sigAC, double *sigBC,
double *sigABC);

Purpose
Takes an array of experimental observations made at various levels of three factors an
performs a three-way analysis of variance in any of the following models:

• Model 1: Fixed effects with interaction and observations per cell.

• Model 2: Any of the six mixed-effects models, where one or two factors are taken to
fixed effects but the remaining factors are taken to have random effects, with intera
and observations per cell.

• Model 3: Random effects with interaction and observations per cell.

Any ANOVA looks for evidence that the factors, or interactions among the factors, have
significant effect on experimental outcomes. The method for finding significance varies
among models.

Parameters
Input

Name Type Description

y double-precision array Array of experimental data of
 elements.

levelA integer array The ith element tells in what level of factor A
the ith observation falls.

levelB integer array The i th element tells in what level of factor B
the ith observation falls.

levelC integer array The i th element tells in what level of factor C
the ith observation falls.

N integer Total number of observations.

L integer Number of observations per cell.

a integer Number of levels in factor A; negative if
A is a random effect.

L 1>

L 1>
L 1>

N a b c L×××=
© National Instruments Corporation 2-27 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way
Output

Name Type Description

b integer Number of levels in factor B; negative if
B is a random effect.

c integer Number of levels in factor C; negative if
C is a random effect.

Name Type Description

info double-precision
2D array

An 8-by-4 matrix as follows:

where ss designates sums of squares,
dof designates degrees of freedom of ss,
ms designates mean squares, and
f designates F-distributions, depending on
the statistical model.

sigA double-precision Level of significance at which you must
reject hypothesis A.

sigB double-precision Level of significance at which you must
reject hypothesis B.

sigC double-precision Level of significance at which you must
reject hypothesis C.

sigAB double-precision Level of significance at which you must
reject hypothesis AB.

sigAC double-precision Level of significance at which you must
reject hypothesis AC.

ssa dofa msa fa

ssb dofb msb fb

ssc dofc msc fc

ssab dofab msab fab

ssac dofac msac fac

ssabc dofabc msabc fabc

sse dofe mse 0.0
LabWindows/CVI Advanced Analysis Library 2-28 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way

ith
e
ou

ll

Return Value

Using This Function
Factors, Levels, and Cells
A factor is a way of categorizing data. You can categorize data into levels, beginning w
level 0. For example, if you perform a measurement on individuals, such as counting th
number of sit-ups they can perform, one such categorization method is age. For age, y
might have three levels, as shown in Table 2-9.

Another possible factor is eye color, with the levels shown in Table 2-10.

A third factor might be height with levels in blocks of 10 cm. A cell of data consists of a
those experimental observations that fall in particular levels of the three factors. In this

Name Type Description

sigBC double-precision Level of significance at which you must
reject hypothesis BC.

sigABC double-precision Level of significance at which you must
reject hypothesis ABC.

Name Type Description

status integer Refer to Appendix A for error codes.

Table 2-9. Age Levels

Level Age

0 6 years to 10 years

1 11 years to 15 years

2 16 years to 20 years

Table 2-10. Eye Color Levels

Level Eye Color

0 blue

1 brown

2 green

3 hazel
© National Instruments Corporation 2-29 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way

tween
f

 want
d at

nt to

nent

ion

tically
e
instance, a cell might consist of those observations made on hazel-eyed individuals be
11 years old and 15 years old who are between 151 cm and 160 cm tall. The number o
observations that fall in each cell must be a constant number L that does not vary
between cells.

Random and Fixed Effects
A factor is taken as a random effect when the factor has a large population of levels you
to draw conclusions about, but that you cannot sample at all levels. Levels are sample
random in the hope of generalizing about all levels.

A factor is taken as a fixed effect when the factor can be sampled from all levels you wa
draw conclusions about.

The input parameters a, b, and c represent the number of levels in factors A, B, and C,
respectively. If factor A is random, set a to a negative value. In the same way, set b and c to
negative values if B and C are random.

General Method
Each of the previous models breaks up the total sum of squares (tss), which is a measure of
the total variation of the data from the overall population mean, into a number of compo
sums of squares, so that:

Each component in the sum is a measure of variation attributed to a certain factor or
interaction among the factors. In this instance, ssa is a measure of the variation as a result
of factor A; ssb is a measure of the variation as a result of factor B; ssc is a measure of the
variation as a result of factor C; ssab is a measure of the variation as a result of the interact
between factors A and B; and so on for ssac, ssbc, and ssabc. The variable sse is a measure
of the variation as a result of random fluctuation.

If factor A has a strong effect on the experimental observations, msa is relatively large.
You can look at specific ratios of these averages because you know how they are statis
distributed. You can therefore determine how likely it is that factor A is as relatively larg
as it is.

tss ssa ssb ssc ssab ssac ssbc ssabc sse+ + + + + + +=
LabWindows/CVI Advanced Analysis Library 2-30 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way

h level
f

s a
us

mean

Statistical Model
Let yp, q, r, s be the sth observation at the pth, qth, and r th levels of A, B, and C, respectively,
where .

Express each observation as the sum of eight components so that:

Assumptions
• Assume that for each p, q, r, and s, is normally distributed with mean 0 and

variance .

• If a factor such as A is fixed, assume that the populations of measurements at eac
are normally distributed with mean and variance . All the populations at each o
the levels have the same variance. In addition, assume that all the means sum to zero.
Make analogous assumptions for B and C.

• If a factor such as A is random, assume that the effect of the level of A itself, , i
random variable normally distributed with mean 0 and variance . Make analogo
assumptions for B and C.

• If all the factors, such as A and B, associated with the effect of an interaction
are fixed, assume that the populations of measurements at each level are normally
distributed with mean and variance . For any fixed p, the means
sum to zero when summing over all q. Similarly, for any fixed q, the means sum
to zero when summing over all p.

• If any of the factors, such as A and B, associated with the effect of an interaction
are random, assume that the effect is a random variable normally distributed with
0 and variance . If A is fixed but B is random, assume also that for any fixed q, the

 means sum to zero when summing over all p. Similarly, if B is fixed but A is
random, assume also that for any fixed p, the means sum to zero when summing
over all q.

• Assume that all effects taken to random variables are independent.

where represents a standard effect present in each observation

, , and are the effects of factors A, B, and C respectively

, , , and are the effects of the corresponding
interactions

 is a random fluctuation

s 0 1 … L 1–, , ,=

yp q r s, , , µ αp βq ϒr αβ()p q, αϒ()p r, βϒ()q r, αβϒ()p q r, , εp q r s, , ,+ + + + + + + +=

µ
αp βq ϒr

αβ()p q, αϒ()p r, βϒ()q r, αβϒ()p q r, ,

εp q r s, , ,

εp q r s, , ,
σe

2

αp σA
2

αp

αp
σA

2

αβ()p q,

αβ()p q, σAB
2 αβ()p q,

αβ()p q,

αβ()p q,

σAB
2

αβ()p q,
αβ()p q,
© National Instruments Corporation 2-31 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way

ction
re no
s are

t

ven
a

l of
re to
all,
u are

sis.
Hypotheses
Each of the following hypotheses are different ways of stating that a factor or an intera
among factors has no effect on experimental outcomes. Start by assuming that there a
effects and then seek evidence to contradict these assumptions. The seven hypothese
as follows:

• For hypothesis A, for all levels of p if factor A is fixed; if factor A
is random.

• For hypothesis B, for all levels of q if factor B is fixed; if factor B
is random.

• For hypothesis C, for all levels of r if factor C is fixed; if factor C
is random.

• For hypothesis AB, for all levels of p and q if factors A and B are fixed;
 if either factor A or B is random.

• For hypothesis AC, for all levels of p and r if factors A and C are fixed;
 if either factor A or C is random.

• For hypothesis BC, for all levels of q and r if factors B and C are fixed;
 if either factor B or C is random.

• For hypothesis ABC, for all levels of p, q, and r if factors A, B, and C
are fixed; if any of the factors A, B, or C are random.

Testing the Hypotheses
For each hypothesis, ANOVA3Way generates a number so that if the hypothesis is true, tha
number is from a particular F-distribution.

For example, in the fixed-effects model, the number , associated with
hypothesis A, is from an F-distribution with and degrees of freedom, gi
that hypothesis A is true. ANOVA3Way calculates the probability that a number taken from
particular F-distribution is larger than the F-value. For example:

 where X is from

Use the probabilities sigA, sigB, sigC, sigAB, sigAC, sigBC, and sigABC to determine when
to reject the associated hypotheses A, B, C, AB, AC, BC, and ABC by choosing a leve
significance for each hypothesis. The level of significance determines how likely you a
reject the hypothesis when it is in fact true. Thus, the level of significance should be sm
for example, 0.05. Remember that the smaller the level of significance, the less likely yo
to reject the hypothesis.

Reject a particular hypothesis when the associated output parameter sigA, sigB, sigC, sigAB,
sigAC, sigBC, or sigABC is less than the level of significance you choose for that hypothe
If A is a random effect, the chosen level of significance is 0.05, and sigA = 0.03, you must

αp 0= σA
2 0=

βq 0= σB
2 0=

ϒr 0= σC
2 0=

αβ()p q, 0=
σAB

2 0=

αϒ()p r, 0=
σAC

2 0=

βϒ()q r, 0=
σBC

2 0=

αβϒ()p q r, , 0=
σABC

2 0=

fa msa mse⁄=
a 1– abc L 1–()

sigA prob X fa>()= F a 1 abc L 1–(),–()
LabWindows/CVI Advanced Analysis Library 2-32 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way

ental

eses
reject the hypothesis that and conclude that factor A has an effect on the experim
observations.

With some models, no appropriate tests exist for certain hypotheses. In these cases,
ANOVA3Way sets the output parameters directly involved with the testing of those hypoth
to –1.0.

Formulas
Let yp, q, r, s be the sth observation at the pth, qth, and r th levels of A, B, and C, respectively,
where .

Let:

σA
2 0=

s 0 1 … L 1–, , ,=

aa a=

bb b=

cc c=

Tp q r, , yp q r s, , ,
s 0=

L 1–

∑=

Tp q, Tp q r, ,
r 0=

cc 1–

∑=

Tp r, Tp q r, ,
q 0=

bb 1–

∑=

Tq r, Tp q r, ,
p 0=

aa 1–

∑=

Tp Tp q,
q 0=

bb 1–

∑=
© National Instruments Corporation 2-33 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way
T = the total sum of all observations:

Tq Tp q,
p 0=

aa 1–

∑=

Tr Tp r,
p 0=

aa 1–

∑=

A T2

bb cc× L×

p 0=

aa 1–

∑=

B
Tp

2

aa cc× L×

q 0=

bb 1–

∑=

C
Tr

2

aa bb× L×

r 0=

cc 1–

∑=

AB
Tp q,

2

cc L×

q 0=

bb 1–

∑
p 0=

aa 1–

∑=

AC
Tp r,

2

bb L×

r 0=

cc 1–

∑
p 0=

aa 1–

∑=

BC
Tq r,

2

aa L×

r 0=

cc 1–

∑
q 0=

bb 1–

∑=

S
Tp q r, ,

2

L

r 0=

cc 1–

∑
q 0=

bb 1–

∑
p 0=

aa 1–

∑=

CF T2

aa bb× cc× L×
--=
LabWindows/CVI Advanced Analysis Library 2-34 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way
Then:

ssa A CF–=

msa
ssa

aa 1–
--------------- ssa

dofa
-----------= =

ssb B CF–=

msb
ssb

bb 1–
--------------- ssb

dofb
-----------= =

ssc C CF–=

msc ssc
cc 1–
-------------- ssc

dofc
-----------= =

ssab AB A– B– CF+=

msab ssab
aa 1–() bb 1–()

-- ssab
dofab
---------------= =

ssac AC A– C– CF+=

msac
ssac

aa 1–() cc 1–()
-- ssac

dofac
--------------= =

ssbc BC B– C– CF+=

msbc
ssbc

bb 1–() cc 1–()
-- ssbc

dofbc
--------------= =

ssabc S AB– AC– BC– A B C CF–+ + +=

msabc ssabc
aa 1–() bb 1–() cc 1–()

-- ssabc
dofabc
------------------= =

mse
sse

aa bb× cc×() L 1–()
--- sse

dofe
-----------= =
© National Instruments Corporation 2-35 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way
fa

msa
mse
---------- if B and C are fixed

msa
msab
------------- if B is random and C is fixed

msa
msac
------------- if B is fixed and C is random

=

fb

msb
mse
---------- if A and C are fixed

msb
msab
------------- if A is random and C is fixed

msb
msbc
------------- if A is fixed and C is random

=

fc

msc
mse
---------- if A and B are fixed

msc
msac
------------- if A is random and B is fixed

msc
msbc
------------- if A is fixed and B is random

=

fab

msab
mse

------------- if C is fixed

msab
msabc
---------------- if C is random

=

fac

msac
mse
------------- if B is fixed

msac
msabc
---------------- if B is random

=

LabWindows/CVI Advanced Analysis Library 2-36 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way

unt of
infall,
If:

assume that f is from an F-distribution with and degrees of freedom.

Example
Suppose that researchers want to know how the number of hours of sunlight, the amo
rainfall, and the average temperature affect the yield of a crop. Each factor, sunlight, ra
and temperature, is divided into three levels as shown in Tables 2-11, 2-12, and 2-13.

Table 2-11. Sunlight Levels

Level
Sunlight

(Factor A)

0 5 hours

1 6 hours

2 7 hours

fbc

msbc
mse
------------- if A is fixed

msbc
msabc
---------------- if A is random

=

fabc
msabc

mse
----------------=

f
ms1

ms2
---------=

ms1
ss1

dof1
----------=

ms2
ss2

dof2
----------=

dof1 dof2
© National Instruments Corporation 2-37 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way

ht be
grees

ots fall
 crop
A particular plot planted with the crop might appear in any one of the 27 different
combinations of these levels with the three factors. For example, one combination mig
6 hours of sunlight with 2 inches of rainfall and an average temperature between 76 de
and 80 degrees, recorded as (1,0,0). Call these combinations cells.

The researchers set up 54 plots in various geographical locations chosen so that two pl
in each of the 27 cells. To measure the productivity of a particular plot, they record the
production. Let sunlight be factor A, rainfall be factor B, and temperature be factor C.

Table 2-14 shows their results.

Table 2-12. Rainfall Levels

Level
Rainfall

(Factor B)

0 2 inches

1 3 inches

2 4 inches

Table 2-13. Temperature Levels

Level
Temperature
(Factor C)

0 76–80 degrees

1 81–85 degrees

2 86–90 degrees

Table 2-14. Plot Production

(A, B, C)
Bushels Produced

from Each Plot

(0, 0, 0) 128 122

(0, 0, 1) 113 108

(0, 0, 2) 116 116

(0, 1, 0) 132 129

(0, 1, 1) 119 121
LabWindows/CVI Advanced Analysis Library 2-38 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way
To perform a three-way analysis of variance in the fixed-effect model using ANOVA3Way, you
store all the numbers of bushels in a double-precision array y of size 54. The integer arrays
levelA, levelB, and levelC record the cells in which observations were made. For any

(0, 1, 2) 126 113

(0, 2, 0) 118 114

(0, 2, 1) 141 133

(0, 2, 2) 121 123

(1, 0, 0) 119 118

(1, 0, 1) 111 115

(1, 0, 2) 143 140

(1, 1, 0) 127 129

(1, 2, 2) 112 113

(1, 1, 1) 128 120

(1, 1, 2) 122 121

(1, 2, 0) 114 115

(1, 2, 1) 116 113

(2, 0, 0) 135 131

(2, 0, 1) 145 145

(2, 0, 2) 152 147

(2, 1, 0) 137 141

(2, 1, 1) 171 171

(2, 1, 2) 135 131

(2, 2, 0) 143 144

(2, 2, 1) 145 147

(2, 2, 2) 121 123

Table 2-14. Plot Production (Continued)

(A, B, C)
Bushels Produced

from Each Plot
© National Instruments Corporation 2-39 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way

e

st
 yield.
particular i, you set these arrays such that yi is the number of bushels a plot produces in th
(levelAi, levelBi, levelCi) cell. For example:

are valid combinations. Therefore, you can set up the input arrays y, levelA, levelB, and
levelC in this example for ANOVA3Way as follows:

Running the code in the following example produces:

For a level of significance such as 0.05, the ANOVA3Way results show that the researchers mu
reject the hypotheses that sunlight, rainfall, and temperature have no effect on the crop
In other words, all three factors have a significant effect on crop yield.

levelAi levelBi levelCi,,() 0 1 1, ,()=

yi 119 or 121=

y 128 122 113 108 116 116 132 129…, , , , , , , ,=

levelA 0 0 0 0 0 0 0 0…, , , , , , , ,=

levelB 0 0 0 0 0 0 1 1…, , , , , , , ,=

levelC 0 0 1 1 2 2 0 0…, , , , , , , ,=

sigA 1.11e 16–=

sigB 1.3e 8–=

sigC 0.0072=

sigAB 1.2e 8–=

sigAC 2.0e 4–=

sigBC 4.5e 10–=

sigABC 4.8e 10–=
LabWindows/CVI Advanced Analysis Library 2-40 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ANOVA3Way
Example
double y[54], sigA, sigB, sigC,sigAB, sigAC, sigBC, sigABC,info[8][4];

int levelA[54], levelB[54], levelC[54];

int L, a, b, c;

int status;

L = 2; /* two observations per cell */

a = 3; /* three levels for factor A, Sunlight */

b = 3; /* three levels for factor B, Rainfall */

c = 3; /* three levels for factor C, Temperature */

/* Read in recorded data y[54], levelA[54], levelB[54], and

levelC[54]. */

status = ANOVA3Way(y, levelA, levelB, levelC, 54, L, a, b, c, info,

&sigA, &sigB, &sigC, &sigAB, &sigAC, &sigBC,

&sigABC);
© National Instruments Corporation 2-41 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ArbitraryWave

ArbitraryWave
int status = ArbitraryWave (int n, double amp, double f, double *phase,

double waveTable[], int tableSize, int interp,
double x[]);

Purpose
Generates an array that contains an arbitrary wave, with each cycle described by an
interpolated version of the waveTable you specify. ArbitraryWave generates the output
array x according to the following formula:

ArbitraryWave calculates WT(x) according to the following interpolation values:

You can use ArbitraryWave to simulate a continuous acquisition from an arbitrary wave
function generator. The unit of the input phase is in degrees, and ArbitraryWave sets phase
to () modulo 360.0 before it returns.

Parameters
Input

where

f is frequency in cycles per sample

where

(int) is the integral part of the variable x

Name Type Description

n integer Number of samples to generate.

amp double-precision Amplitude of the generated signal.

f double-precision Frequency of the generated signal, in
normalized units of cycles/sample.

phase double-precision Points to the initial phase, in degrees, of the
generated signal.

xi amp arb phase f 360.0 i××+()×=

arb p() WT p modulo 360.0()=

WT x() waveTableix for interp 0=

waveTableix dx waveTableix 1+()%tableSize waveTableix–()+ for interp 1=

=

ix int()x=

dx x int()x–=

phase f 360.0 n××+
LabWindows/CVI Advanced Analysis Library 2-42 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ArbitraryWave
Output

Return Value

Name Type Description

waveTable double-precision array Contains equally spaced samples of
one cycle of the generated signal.

tableSize integer Number of elements the waveTable
array contains.

interp integer Determines the type of interpolation to use
to generate the arbitrary wave signal from
the waveTable samples.
0 = no interpolation
1 = linear interpolation

Name Type Description

phase double-precision Upon completion of ArbitraryWave ,
phase points to the phase of the next
portion of the signal. Use this parameter in
the next call to ArbitraryWave to simulate
a continuous function generator.

x double-precision array Contains the generated arbitrary
wave signal.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-43 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — AutoPowerSpectrum

 auto
AutoPowerSpectrum
int status = AutoPowerSpectrum (double x[], int n, double dt,

double autoSpectrum[], double *df);

Purpose
Calculates the single-sided, scaled auto power spectrum of a time-domain signal. The
power spectrum is defined as:

AutoPowerSpectrum converts the auto power spectrum to a single-sided form.

Parameters
Input

where n is the number of points in the signal array X

* denotes a complex conjugate

Name Type Description

x double-precision array Contains the time-domain signal.

n integer Number of elements in the input array.
n must be a power of 2.

dt double-precision Sampling period of the time-domain signal,
usually in seconds.

, where fs is the sampling
frequency of the time-domain signal.

FFT X() FFT* X()
n2

dt 1 fs⁄=
LabWindows/CVI Advanced Analysis Library 2-44 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — AutoPowerSpectrum

Output

Return Value

Name Type Description

autoSpectrum double-precision array Single-sided amplitude spectrum magnitude
in volts, root-mean-square, if the input
signal is in volts. If the input signal is not in
volts, the results are in input signal units,
root-mean-square. This array must be at
least elements long.

df double-precision Points to the frequency interval, in hertz, if
dt is in seconds.

Name Type Description

status integer Refer to Appendix A for error codes.

n 2⁄

df 1 n dt×()⁄=
© National Instruments Corporation 2-45 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — BackSub
BackSub
int status = BackSub (void *a, double y[], int n, double x[]);

Purpose
Solves the linear equations by backward substitution. BackSub assumes a is
ann-by-n lower triangular matrix in which the diagonal elements all equal one. BackSub
obtains x using the following formulas:

BackSub can perform the operation in place; that is, x and y can be the same array.
UseBackSub in conjunction with LU and ForwSub to solve linear equations.

Refer to the LU function description for more information.

Parameters
Input

Output

Return Value

Name Type Description

a double-precision
2D array

Input matrix.

y double-precision array Input vector.

n integer Dimension size of a.

Name Type Description

x double-precision array Solution vector.

Name Type Description

status integer Refer to Appendix A for error codes.

a x× y=

xn 1–

yn 1–

an 1 n 1–,–
----------------------=

xi

yi ai j, xj
j i 1+=

n 1–

∑–

ai j,
------------------------------------=
LabWindows/CVI Advanced Analysis Library 2-46 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — BackSub
Example
/* to solve a linear equation A*x = y */

double A[10][10], x[10], y[10];

int p[10]; /* permutation vector */

int sign, n;

n = 10;

LU(A, n, p, &sign); /* LU decomposition of A */

ForwSub(A, y, n, x, p); /* forward substitution */

BackSub(A, x, n, x); /* backward substitution */
© National Instruments Corporation 2-47 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Bessel_CascadeCoef

d by

nd

re

e

Bessel_CascadeCoef
int status = Bessel_CascadeCoef (double fs, double fl, double fh,

IIRFilterPtr filterInformation);

Purpose
Generates the set of cascade form filter coefficients to implement an IIR filter as specifie
the Bessel filter model.

filterInformation is the pointer to the filter structure that contains the filter coefficients a
the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter
structure and then call AllocIIRFilterPtr with the new type and order parameters befo
you call Bessel_CascadeCoef .

If the type and order remain the same, you can call Bessel_CascadeCoef without calling
FreeIIRFilterPtr and AllocIIRFilterPtr . In this case, you should properly reset th
filtering operation for that structure by calling ResetIIRFilter before the first call to
IIRCascadeFiltering .

Parameters
Input

Output

Name Type Description

fs double-precision Specifies the sampling frequency in hertz.

fl double-precision Specifies the desired lower cutoff frequency
of the filter in hertz.

fh double-precision Specifies the desired upper cutoff frequency
of the filter in hertz.

Name Type Description

filterInformation IIRFilterPtr Pointer to the filter structure that contains
the filter coefficients and the internal filter
information.

Refer to the AllocIIRFilterPtr
function description for more information
about the filter structure.
LabWindows/CVI Advanced Analysis Library 2-48 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Bessel_CascadeCoef
Return Value

Example
/* Design a cascade lowpass Bessel IIR filter. */

double fs, fl, fh, x[256], y[256];

int type, order, n;

IIRFilterPtr filterInfo;

n = 256;

fs = 1000.0;

fl = 200.0;

order = 5;

type = 0; /* lowpass */

Uniform(n, 17, x);

filterInfo = AllocIIRFilterPtr(type, order);

if(filterInfo!=0) {

Bessel_CascadeCoef(fs, fl, fh, filterInfo);

IIRCascadeFiltering(x, n, filterInfo, y);

FreeIIRFilterPtr(filterInfo);

}

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-49 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Bessel_Coef

sel
Bessel_Coef
int status = Bessel_Coef (int type, int order, double fs, double fl,

double fh, double a[], int na, double b[],
int nb);

Purpose
Generates the set of filter coefficients to implement an IIR filter as specified by the Bes
filter model. type has the valid values as shown in Table 2-15.

a and b are the reverse and forward filter coefficients. Use IIRFiltering to achieve the
actual filtering:

Parameters
Input

Table 2-15. Valid type Values

Value Description

0 lowpass filter; fh is not used

1 highpass filter; fh is not used

2 bandpass filter

3 bandstop filter

Name Type Description

type integer Controls the filter type of the Bessel
IIR filter coefficients.

order integer Order of the IIR filter.

fs double-precision Sampling frequency in hertz.

fl double-precision Desired lower cutoff frequency of the filter
in hertz.

fh double-precision Desired higher cutoff frequency of the filter
in hertz.

yn
1
a0
----- bi xn i– ai yn i–

i 1=

na 1–

∑–
i 0=

nb 1–

∑

=

LabWindows/CVI Advanced Analysis Library 2-50 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Bessel_Coef
Output

Return Value

Name Type Description

na integer Number of coefficients in the a coefficient
array.

nb integer Number of coefficients in the b coefficient
array.

Name Type Description

a double-precision array Array that contains the reverse coefficients
of the designed IIR filter.

b double-precision array Array that contains the forward coefficients
of the designed IIR filter.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-51 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — BkmanWin
BkmanWin
int status = BkmanWin (double x[], int n);

Purpose
Applies a Blackman window to the x input signal. The following formula defines the
Blackman window:

 for

BkmanWin obtains the output signal using the following formula:

 for

The function performs the window operation in place; that is, the windowed data x replaces
the input data x.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

Name Type Description

x double-precision array Windowed data.

Name Type Description

status integer Refer to Appendix A for error codes.

wi 0.42 0.5
2πi
n

 0.08

4πi
n

 cos+cos–= i 0 1 … n 1–, , ,=

xi xi wi×= i 0 1 … n 1–, , ,=
LabWindows/CVI Advanced Analysis Library 2-52 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — BlkHarrisWin

BlkHarrisWin
int status = BlkHarrisWin (double x[], int n);

Purpose
Applies a 3-term Blackman-Harris window to the input sequence x. If y represents the output
sequence, BlkHarrisWin obtains the elements of y using the formula:

where n is the number of elements in x

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Contains the input signal.

n integer Number of elements in the input array.

Name Type Description

x double-precision array Contains the signal after BlkHarrisWin
applies the Blackman-Harris window.

Name Type Description

status integer Refer to Appendix A for error codes.

yi xi 0.42323 0.49755
2πi
n

 0.07922

4πi
n

 cos+cos–

 =
© National Instruments Corporation 2-53 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Bw_BPF
Bw_BPF
int status = Bw_BPF (double x[], int n, double fs, double fl, double fh,

int order, double y[]);

Purpose
Filters the input array using a digital bandpass Butterworth filter. Bw_BPF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-54 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Bw_BPF
Example
/* Generate a random signal and filter it using a fifth-order bandpass

Butterworth filter. The pass band is from 200.0 to 300.0. */

double x[256], y[256], fs, fl, fh;

int n, order;

int status;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

order = 5;

Uniform (n, 17, x);

status = Bw_BPF (x, n, fs, fl, fh, order, y);
© National Instruments Corporation 2-55 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Bw_BSF
Bw_BSF
int status = Bw_BSF (double x[], int n, double fs, double fl, double fh,

int order, double y[]);

Purpose
Filters the input array using a digital bandstop Butterworth filter. Bw_BSF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-56 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Bw_BSF
Example
/* Generate a random signal and filter it using a fifth-order bandstop

Butterworth filter. The stop band is from 200.0 to 300.0. */

double x[256], y[256], fs, fl, fh;

int n, order;

int status;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

order = 5;

Uniform (n, 17, x);

status = Bw_BSF (x, n, fs, fl, fh, order, y);
© National Instruments Corporation 2-57 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Bw_CascadeCoef

d by

re

e

Bw_CascadeCoef
int status = Bw_CascadeCoef (double fs, double fl, double fh,

IIRFilterPtr filterInformation);

Purpose
Generates the set of cascade form filter coefficients to implement an IIR filter as specifie
the Butterworth filter model.

filterInformation is the pointer to the filter structure that contains the filter
coefficients and the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter
structure and then call AllocIIRFilterPtr with the new type and order parameters befo
you call Bw_CascadeCoef .

If the type and order remain the same, you can call Bw_CascadeCoef without calling
FreeIIRFilterPtr and AllocIIRFilterPtr . In this case, you should properly reset th
filtering operation for that structure by calling ResetIIRFilter before the first call to
IIRCascadeFiltering .

Parameters
Input

Output

Name Type Description

fs double-precision Specifies the sampling frequency in hertz.

fl double-precision Specifies the desired lower cutoff frequency
of the filter in hertz.

fh double-precision Specifies the desired upper cutoff frequency
of the filter in hertz.

Name Type Description

filterInformation IIRFilterPtr Pointer to the filter structure that contains
the filter coefficients and the internal filter
information.

Refer to the AllocIIRFilterPtr
function description for more information
about the filter structure.
LabWindows/CVI Advanced Analysis Library 2-58 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Bw_CascadeCoef
Return Value

Example
/* Design a cascade lowpass Butterworth IIR filter. */

double fs, fl, fh, x[256], y[256];

int type, order, n;

IIRFilterPtr filterInfo;

n = 256;

fs = 1000.0;

fl = 200.0;

order = 5;

type = 0; /* lowpass */

Uniform(n, 17, x);

filterInfo = AllocIIRFilterPtr(type, order);

if(filterInfo!=0) {

Bw_CascadeCoef(fs, fl, fh, filterInfo);

IIRCascadeFiltering(x, n, filterInfo, y);

FreeIIRFilterPtr(filterInfo);

}

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-59 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Bw_Coef
Bw_Coef
int status = Bw_Coef (int type, int order, double fs, double fl, double fh,

double a[], int na, double b[], int nb);

Purpose
Generates the set of filter coefficients to implement an IIR filter as specified by the
Butterworth filter model. type has the valid values as shown in Table 2-16.

a and b are the reverse and forward filter coefficients. Use IIRFiltering to achieve actual
filtering:

Table 2-16. Valid type Values

Value Description

0 lowpass filter; fh is not used

1 highpass filter; fh is not used

2 bandpass filter

3 bandstop filter

yn
1
a0
----- bi xn i– ai yn i–

i 1=

na 1–

∑–
i 0=

nb 1–

∑

=

LabWindows/CVI Advanced Analysis Library 2-60 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Bw_Coef
Parameters
Input

Output

Return Value

Name Type Description

type integer Controls the filter type of the Butterworth
IIR filter coefficients.

order integer Order of the IIR filter.

fs double-precision Sampling frequency in hertz.

fl double-precision Desired lower cutoff frequency of the filter
in hertz.

fh double-precision Desired higher cutoff frequency of the filter
in hertz.

na integer Number of coefficients in the a coefficient
array.

nb integer Number of coefficients in the b coefficient
array.

Name Type Description

a double-precision array Array that contains the reverse coefficients
of the designed IIR filter.

b double-precision array Array that contains the forward coefficients
of the designed IIR filter.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-61 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Bw_HPF
Bw_HPF
int status = Bw_HPF (double x[], int n, double fs, double fc, int order,

double y[]);

Purpose
Filters the input array using a digital highpass Butterworth filter. Bw_HPF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-62 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Bw_HPF
Example
/* Generate a random signal and filter it using a fifth-order highpass

Butterworth filter. */

double x[256], y[256], fs, fc;

int n, order;

int status;

n = 256;

fs = 1000.0;

fc = 200.0;

order = 5;

Uniform (n, 17, x);

status = Bw_HPF (x, n, fs, fc, order, y);
© National Instruments Corporation 2-63 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Bw_LPF
Bw_LPF
int status = Bw_LPF (double x[], int n, double fs, double fc, int order,

double y[]);

Purpose
Filters the input array using a digital lowpass Butterworth filter. Bw_LPF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-64 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Bw_LPF
Example
/* Generate a random signal and filter it using a fifth-order lowpass

Butterworth filter. */

double x[256], y[256], fs, fc;

int n, order;

int status;

n = 256;

fs = 1000.0;

fc = 200.0;

order = 5;

Uniform (n, 17, x);

status = Bw_LPF (x, n, fs, fc, order, y);
© National Instruments Corporation 2-65 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CascadeToDirectCoef

e

re

).
CascadeToDirectCoef
int status = CascadeToDirectCoef (IIRFilterPtr filterInformation,

double a[], int na, double b[], int nb);

Purpose
Converts from the cascade IIR coefficients the filterInformation structure contains to
direct-form IIR coefficients in arrays a and b. These two arrays must be allocated in the sam
way as the old-style direct coefficient design functions, for example, Bw_Coef .

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter
structure and then call AllocIIRFilterPtr with the new type and order parameters befo
you call CascadeToDirectCoef .

For lowpass and highpass type filters, the direct coefficient arrays must equal (

For bandpass and bandstop type filters, the direct coefficient arrays must equal
().

Parameters
Input

Name Type Description

filterInformation IIRFilterPtr Pointer to the filter structure that contains
the filter coefficients and the internal filter
information.

Refer to the AllocIIRFilterPtr
function description for more information
about the filter structure.

na integer Specifies the number of coefficients in the
a coefficient array.

 for low- or highpass
filters

 for bandpass or
bandstop filters

nb integer Specifies the number of coefficients in the
b coefficient array.

 for low- or highpass
filters

 for bandpass or
bandstop filters

order 1+

2 order 1+×

na order 1+=

na 2 order 1+×=

nb order 1+=

nb 2 order 1+×=
LabWindows/CVI Advanced Analysis Library 2-66 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CascadeToDirectCoef
Output

Return Value

Name Type Description

a double-precision array Array that contains the reverse
coefficients of the direct-form IIR filter.

b double-precision array Array that contains the forward
coefficients of the direct-form IIR filter.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-67 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ch_BPF
Ch_BPF
int status = Ch_BPF (double x[], int n, double fs, double fl, double fh,

double ripple, int order, double y[]);

Purpose
Filters the input array using a digital bandpass Chebyshev filter. Ch_BPF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

ripple double-precision Pass band ripples in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-68 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ch_BPF
Example
/* Generate a random signal and filter it using a fifth-order bandpass

Chebyshev filter. The pass band is from 200.0 to 300.0. */

double x[256], y[256], fs, fl, fh, ripple;

int n, order;

int status;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

ripple = 0.5;

order = 5;

Uniform (n, 17, x);

status = Ch_BPF (x, n, fs, fl, fh, ripple, order, y);
© National Instruments Corporation 2-69 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ch_BSF
Ch_BSF
int status = Ch_BSF (double x[], int n, double fs, double fl, double fh,

double ripple, int order, double y[]);

Purpose
Filters the input array using a digital bandstop Chebyshev filter. Ch_BSF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

ripple double-precision Pass band ripples in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-70 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ch_BSF
Example
/* Generate a random signal and filter it using a fifth-order bandstop

Chebyshev filter. The stop band is from 200.0 to 300.0. */

double x[256], y[256], fs, fl, fh, ripple;

int n, order;

int status;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

ripple = 0.5;

order = 5;

Uniform (n, 17, x);

status = Ch_BSF (x, n, fs, fl, fh, ripple, order, y);
© National Instruments Corporation 2-71 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ch_CascadeCoef

d by

nd

re

e

Ch_CascadeCoef
int status = Ch_CascadeCoef (double fs, double fl, double fh, double ripple,

IIRFilterPtr filterInformation);

Purpose
Generates the set of cascade form filter coefficients to implement an IIR filter as specifie
the Chebyshev filter model.

filterInformation is the pointer to the filter structure that contains the filter coefficients a
the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter
structure and then call AllocIIRFilterPtr with the new type and order parameters befo
you call Ch_CascadeCoef .

If the type and order remain the same, you can call Ch_CascadeCoef without calling
FreeIIRFilterPtr and AllocIIRFilterPtr . In this case, you should properly reset th
filtering operation for that structure by calling ResetIIRFilter before the first call to
IIRCascadeFiltering .

Parameters
Input

Name Type Description

fs double-precision Specifies the sampling frequency in hertz.

fl double-precision Specifies the desired lower cutoff frequency
of the filter in hertz.

fh double-precision Specifies the desired upper cutoff frequency
of the filter in hertz.

ripple double-precision Specifies the amplitude of the stopband
ripple in decibels.
LabWindows/CVI Advanced Analysis Library 2-72 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ch_CascadeCoef
Output

Return Value

Example
/* Design a cascade lowpass Chebyshev IIR filter. */

double fs, fl, fh, ripple, x[256], y[256];

int type, order, n;

IIRFilterPtr filterInfo;

n = 256;

fs = 1000.0;

fl = 200.0;

ripple = 0.5;

order = 5;

type = 0; /* lowpass */

Uniform(n, 17, x);

filterInfo = AllocIIRFilterPtr(type, order);

if(filterInfo!=0) {

Ch_CascadeCoef(fs, fl, fh, ripple, filterInfo);

IIRCascadeFiltering(x, n, filterInfo, y);

FreeIIRFilterPtr(filterInfo);

}

Name Type Description

filterInformation IIRFilterPtr Pointer to the filter structure that contains
the filter coefficients and the internal filter
information.

Refer to the AllocIIRFilterPtr
function description for more information
about the filter structure.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-73 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ch_Coef

shev
Ch_Coef
int status = Ch_Coef (int type, int order, double fs, double fl, double fh,

double ripple, double a[], int na, double b[],
int nb);

Purpose
Generates the set of filter coefficients to implement an IIR filter as specified by the Cheby
filter model. type has the valid values as shown in Table 2-17.

a and b are the reverse and forward filter coefficients. Use IIRFiltering to achieve the
actual filtering:

Parameters
Input

Table 2-17. Valid type Values

Value Description

0 lowpass filter; fh is not used

1 highpass filter; fh is not used

2 bandpass filter

3 bandstop filter

Name Type Description

type integer Controls the filter type of the Chebyshev IIR
filter coefficients.

order integer Order of the IIR filter.

fs double-precision Sampling frequency in hertz.

fl double-precision Desired lower cutoff frequency of the filter
in hertz.

fh double-precision Desired higher cutoff frequency of the filter
in hertz.

yn
1
a0
----- bi xn i– ai yn i–

i 1=

na 1–

∑–
i 0=

nb 1–

∑

=

LabWindows/CVI Advanced Analysis Library 2-74 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ch_Coef
Output

Return Value

Name Type Description

ripple double-precision Amplitude of the stopband ripple in
decibels.

na integer Number of coefficients in the a coefficient
array.

nb integer Number of coefficients in the b coefficient
array.

Name Type Description

a double-precision array Array that contains the reverse coefficients
of the designed IIR filter.

b double-precision array Array that contains the forward coefficients
of the designed IIR filter.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-75 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ch_HPF
Ch_HPF
int status = Ch_HPF (double x[], int n, double fs, double fc, double ripple,

int order, double y[]);

Purpose
Filters the input array using a digital highpass Chebyshev filter. Ch_HPF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

ripple double-precision Pass band ripples in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-76 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ch_HPF
Example
/* Generate a random signal and filter it using a fifth-order highpass

Chebyshev filter. */

double x[256], y[256], fs, fc, ripple;

int n, order;

int status;

n = 256;

fs = 1000.0;

fc = 200.0;

ripple = 0.5;

order = 5;

Uniform (n, 17, x);

status = Ch_HPF (x, n, fs, fc, ripple, order, y);
© National Instruments Corporation 2-77 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ch_LPF
Ch_LPF
int status = Ch_LPF (double x[], int n, double fs, double fc, double ripple,

int order, double y[]);

Purpose
Filters the input array using a digital lowpass Chebyshev filter. Ch_LPF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

ripple double-precision Pass band ripples in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-78 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ch_LPF
Example
/* Generate a random signal and filter it using a fifth-order lowpass

Chebyshev filter. */

double x[256], y[256], fs, fc, ripple;

int n, order;

int status;

n = 256;

fs = 1000.0;

fc = 200.0;

ripple = 0.5;

order = 5;

Uniform (n, 17, x);

status = Ch_LPF (x, n, fs, fc, ripple, order, y);
© National Instruments Corporation 2-79 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CheckPosDef

ive

o
CheckPosDef
int status = CheckPosDef (void *A, int n, int *positiveDefinite);

Purpose
Checks if the real, square input matrix is positive definite. A real, square matrix is posit
definite if and only if it is symmetric and the quadratic form

is true for all nonzero vectors x. For more information on positive definite matrices, refer t
Matrix Computations by G.H. Golub and C.F. VanLoan.

Parameters
Input

Output

Return Value

Name Type Description

A double-precision
2D array

Input square matrix.

n integer Number of elements in one dimension of
the matrix.

Name Type Description

positiveDefinite integer 1 if the input matrix is positive definite;
0 otherwise.

Name Type Description

status integer Refer to Appendix A for error codes.

xTAx 0>
LabWindows/CVI Advanced Analysis Library 2-80 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Chirp
Chirp
int status = Chirp (int n, double amp, double f1, double f2, double x[]);

Purpose
Generates an array that contains a chirp pattern. Chirp generates the output array x according
to the following formula:

Parameters
Input

Output

Return Value

where

and where f1 is the beginning frequency in cycles per sample

f 2 is the ending frequency in cycles per sample

Name Type Description

n integer Number of samples to generate.

amp double-precision Amplitude of the resulting signal.

f1 double-precision Beginning frequency of the resulting signal
in normalized units of cycles/sample.

f2 double-precision Ending frequency of the resulting signal in
normalized units of cycles/sample.

Name Type Description

x double-precision array Contains the generated chirp pattern.

Name Type Description

status integer Refer to Appendix A for error codes.

xi amp
a
2
--- i b+

 i
 sin×=

a
2π f 2 f1–()×

n
-----------------------------------=

b 2π f1×=
© National Instruments Corporation 2-81 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Cholesky

f the

es.
an

 than
Cholesky
int status = Cholesky (void *A, int n, void *R);

Purpose
Calculates the Cholesky factorization of a real, symmetric positive definite input matrix. I
input matrix is not positive definite, Cholesky returns an error.

The following formula defines the Cholesky factorization of an n-by-n symmetric positive
definite matrix A:

Cholesky factorization is similar to LU factorization for symmetric positive definite matric
If the matrix in your application is positive definite, use Cholesky factorization rather th
LU factorization for the following reasons:

• The algorithm is well defined.

• Numerical stability does not require pivoting.

• Cholesky factorization requires about half the programming time and less memory
LU factorization.

Parameters
Input

Output

where R is an upper triangular matrix of dimensions n-by-n
 is the transpose of R

Name Type Description

A double-precision
2D array

Input square, positive definite matrix.

n integer Number of elements in one dimension of
the matrix.

Name Type Description

R double-precision
2D array

Result matrix of the Cholesky
decomposition.

A R
T
R=

R
T

LabWindows/CVI Advanced Analysis Library 2-82 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Cholesky
Return Value

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-83 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Clear1D
Clear1D
int status = Clear1D (double x[], int n);

Purpose
Sets the elements of the x array to 0.0.

Parameters
Input

Output

Return Value

Name Type Description

n integer Number of elements in x.

Name Type Description

x double-precision array Cleared array.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-84 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Clip
Clip
int status = Clip (double x[], int n, double upper, double lower, double y[]);

Purpose
Clips the input array values. The range of the resulting output array is [lower : upper].
Clip obtains the ith element of the resulting array using the following formula:

Clip can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

upper double-precision Upper limit.

lower double-precision Lower limit.

Name Type Description

y double-precision array Clipped array.

Name Type Description

status integer Refer to Appendix A for error codes.

yi

upper if xi upper>
lower if xi lower<
xi otherwise

=

© National Instruments Corporation 2-85 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ConditionNumber

with
o one
 one,
atrix
ConditionNumber
int status = ConditionNumber (void *A, int n, int m, int normType, double *c);

Purpose
Calculates the condition number of a real input matrix A. The normType parameter indicates
what type of norm to use to calculate the condition number. The input matrix A does not need
to be square when normType is 2-norm.

The following formula defines the condition number c of a matrix A:

 where is the p-norm of the matrix A

The normType value defines the p-norm behavior. For a 2-norm normType, c is the ratio of
the largest singular value of A to the smallest singular value of A.

The condition number of a matrix indicates how near to singular the matrix is. A matrix
a large condition number is nearly singular, and a matrix with a condition number close t
is far from singular. The condition number of a matrix is always greater than or equal to
and it can help assess the accuracy of a solution to a linear system of equations and m
inversion.

Parameters
Input

Output

Name Type Description

A double-precision
2D array

Input matrix. If normType is 2-norm, the
matrix can be square or rectangular;
otherwise, it must be square.

n integer Number of rows in A.

m integer Number of columns in A.

normType integer Type of p-norm function to use to calculate
the condition number.

Name Type Description

c double-precision Condition number of the matrix.

c A p A 1–× p= A p
LabWindows/CVI Advanced Analysis Library 2-86 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ConditionNumber
Return Value

Parameter Discussion
The normType parameter indicates what type of norm to use to calculate the condition
number. Table 2-18 shows valid norm type values.

Name Type Description

status integer Refer to Appendix A for error codes.

Table 2-18. Valid Norm Type Values

Norm Type Value Meaning

2-norm 0 Largest singular value of A.

1-norm 1 Largest column sum of A.

Frobenius-norm 2 Square root of the sum of the diagonal elements of ATA,
where AT is the complex conjugate transpose of A.

Infinite-norm 3 Largest row sum of A.
© National Instruments Corporation 2-87 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Contingency_Table

u

t
Contingency_Table
int status = Contingency_Table (int s, int k, int void *y, double *Test_Stat,

double *Sig);

Purpose
Creates a contingency table in which to classify and tally objects of experimentation
according to two schemes of categorization. Use Contingency_Table to perform a test of
homogeneity or a test of independence.

Note For both tests, the math is identical. It is not necessary to specify which test yo
apply. The only difference is in the hypothesis you test.

Parameters
Input

Output

Name Type Description

s integer Number of random samples in the test of
homogeneity or the number of categories in
the first categorization scheme in the test of
independence.

k integer Number of categories in the test of
homogeneity or the number of categories in
the second categorization scheme in the tes
of independence.

y integer 2D array Contingency table, indexed as an s-by-k
matrix.

Name Type Description

Test_Stat double-precision Use to calculate Sig. If the hypothesis
is true, Test_Stat is known to come
from a chi-square distribution with

 degrees of freedom.

Sig double-precision Level of significance at which you must
reject the hypothesis.

s 1–() k 1–()×
LabWindows/CVI Advanced Analysis Library 2-88 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Contingency_Table

tion
tion

 they

cheme
s of
t pick
f
ble

lly
st the
ally
ou
Return Value

Using This Function
A contingency table is a table in which you can classify and tally objects of experimenta
according to two schemes of categorization. For example, if the objects of experimenta
are individuals, one scheme might be political affiliation: Know-Nothing, Tory, Whig,
Mugwump, and so on. Another scheme might be to classify individuals according to how
vote on an issue.

Chi-Square Test of Homogeneity
Take a random sample of a fixed size from each of the categories in one categorization s
for the chi-square test of homogeneity. For each of the samples, categorize the object
experimentation according to the second scheme and tally them. For example, you migh
100 Know-Nothings, 100 Whigs, 100 Tories, and 100 Mugwumps. Count the number o
individuals who vote a certain way for each category. This produces the contingency ta
shown in Table 2-19.

Notice that the sum of each of the rows equals 100.

Test the hypothesis that the populations from which you take each sample are identica
distributed with respect to the second categorization scheme. For example, you can te
hypothesis that the four samples of politically affiliated individuals are distributed identic
with respect to the way they vote. If this hypothesis is true, it means that a Mugwump y
select at random is just as likely to vote yes as a Whig you select at random.

Name Type Description

status integer Refer to Appendix A for error codes.

Table 2-19. Contingency Table

Category Yes No Undecided

Know-Nothing 36 24 40

Whig 12 53 35

Tory 61 11 28

Mugwump 83 3 14
© National Instruments Corporation 2-89 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Contingency_Table

.
emes.
2-20.

d

you
s or her

likely
Chi-Square Test of Independence
Take only one sample from the total population for the chi-square test of independence
Categorize each object of experimentation and tally them in the two categorization sch
If you select 500 individuals, for example, you might receive the results shown in Table

Notice that the sum of each row is different but that the total number of individuals tallie
is 500.

Test the hypothesis that the categorization schemes are independent. For example, if
choose a person at random and he or she is a Mugwump, the hypothesis states that hi
political affiliation has no effect on how he or she votes on the issue you select.

Testing the Hypothesis
Whichever test you use, you must choose a level of significance. This determines how
you are to reject a true hypothesis. Thus, the level of significance should be small, for
example, 0.05.

The output parameter Sig is the level of significance at which you reject the hypothesis:

If Sig is less than the level of significance, you must reject the hypothesis.

Table 2-20. Contingency Table

Category Yes No Undecided

Know-Nothing 18 15 18

Whig 55 93 38

Tory 101 83 20

Mugwump 16 31 12

where is a random variable from the chi-square distribution with
degrees of freedom

Sig prob χ Test_Stat≥()=

χ s 1–() k 1–()×
LabWindows/CVI Advanced Analysis Library 2-90 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Contingency_Table
Formulas
Let yp, q be the number of occurrences in the (p, q)th cell of the contingency table for

 and .

Let:

Example
/* Generate a random contingency table. Because rows will not have

identical sums, use the chi-square test of independence. */

int s=10, k=10, y[10][10], i, j, status;

double Test_Stat, Sig, temp[1];

for(i=0; i<s; i++)

for(j=0; j<k; j++)

{

WhiteNoise (1, 5, 17, temp);

temp[0] += 6.0;

y[i][j] = (int) temp[0];

}

status = Contingency_Table (s, k, y, &Test_Stat, &Sig);

p 0 1 … s 1–(), , ,= q 0 1 … k 1–(), , ,=

yp yp q,
q 0=

k 1–

∑=

yq yp q,
p 0=

s 1–

∑=

y yp q,
q 0=

k 1–

∑
p 0=

s 1–

∑=

ep q,
yp yq×

y
----------------=

Test_Stat
yp q, ep q,–[]2

ep q,

q 0=

k 1–

∑
p 0=

s 1–

∑=
© National Instruments Corporation 2-91 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Convolve
Convolve
int status = Convolve (double x[], int n, double y[], int m, double cxy[]);

Purpose
Finds the convolution of the x and y input arrays. Convolve obtains the convolution using
the following formula:

Note This formula description assumes that . For , exchange (x, y) and
(m, n) in the previous equations.

Parameters
Input

Output

Return Value

where , for

, for

, for

Name Type Description

x double-precision array x input array.

n integer Number of elements in x.

y double-precision array y input array.

m integer Number of elements in y.

Name Type Description

cxy double-precision array Convolution array.

Name Type Description

status integer Refer to Appendix A for error codes.

cxyi xk yi k–×
k a=

b

∑=

y 0= b i= 0 i m<≤
a i m– 1+= b i= m i n<≤
a i m– 1+= b n 1–= n i n m 1–+≤ ≤

m n≤ m n>
LabWindows/CVI Advanced Analysis Library 2-92 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Convolve

Using This Function

The size of the output array must be at least elements long. This algorithm
executes more efficiently if the sizes of the input arrays are a power of two.

Example
/* Generate two arrays with random numbers and find their

convolution. */

double x[256], y[256], cxy[512];

int n, m;

n = 256;

m = 256;

Uniform (n, 17, x);

Uniform (m, 17, y);

Convolve (x, n, y, m, cxy);

n m 1–+()
© National Instruments Corporation 2-93 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Copy1D
Copy1D
int status = Copy1D (double x, int n, double y[]);

Purpose
Copies the elements of the x array. Use Copy1D to duplicate arrays for in place operations.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

Name Type Description

y double-precision array Duplicated array.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-94 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Correlate
Correlate
int status = Correlate (double x[], int n, double y[], int m, double rxy[]);

Purpose
Finds the correlation of the input arrays. Correlate obtains the correlation using the
following formula:

 when or

 when or

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array y input array.

n integer Number of elements in x.

y double-precision array y input array.

m integer Number of elements in y.

Name Type Description

rxy double-precision array Correlation array.

Name Type Description

status integer Refer to Appendix A for error codes.

rxyi xk n 1– i–+ yk
k 0=

m 1–

∑=

yj 0= j 0< j m≥

xi 0= j 0< j n≥
© National Instruments Corporation 2-95 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Correlate
Using This Function
The size of the output array must be at least elements long.

Example
/* Generate two arrays with random numbers and find their

correlation. */

double x[256], y[256], cxy[512];

int n, m;

n = 256;

m = 256;

Uniform (n, 17, x);

Uniform (m, 17, y);

Correlate (x, n, y, m, cxy);

n m 1–+()
LabWindows/CVI Advanced Analysis Library 2-96 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CosTaperedWin

,
CosTaperedWin
int status = CosTaperedWin (double x[], int n);

Purpose
Applies a cosine-tapered window to the input sequence x. If y represents the output sequence
CosTaperedWin obtains the elements of y from the formula:

where

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Contains the input signal.

n integer Number of elements in the input array.

Name Type Description

x double-precision array Contains the signal after CosTaperedWin
applies the cosine-tapered window.

Name Type Description

status integer Refer to Appendix A for error codes.

yi

0.5 xi 1 2πi
n

 cos–

 i 0 1 ..., m 1–, ,=

xi i m m 1 n m– 1–,+,=

0.5 xi 1
2πi
n

 cos–

 i n m n m– 1 n 1–,+,–=

=

m round
n
10

 =
© National Instruments Corporation 2-97 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CrossPowerSpectrum
CrossPowerSpectrum
int status = CrossPowerSpectrum (double x[], double y[], int n, double dt,

double magSxy[], double phaseSxy[], double *df);

Purpose
Calculates the single-sided, scaled cross power spectrum of two time-domain signals.
The following formula defines the cross power spectrum:

 where n is the number of points in arrays x and y

magSxy and phaseSxy are single-sided magnitude and phase spectra of Sxy.

Parameters
Input

Name Type Description

x double-precision array Time-domain signal x.

y double-precision array Time-domain signal y.

n integer Number of elements in the input array.
n must be a power of 2.

dt double-precision Sampling period of the time-domain signal,
usually in seconds. , where fs is
the sampling frequency of the time-domain
signal.

Sxy
FFT y()FFT x()

n2
--------------------------------------=

dt 1 fs⁄=
LabWindows/CVI Advanced Analysis Library 2-98 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CrossPowerSpectrum

Output

Return Value

Name Type Description

magSxy double-precision array Single-sided magnitude cross power
spectrum between signals x and y in volts
rms square if the input signals are in volts. If
the input signals are not in volts, the results
are in input signal units rms square. This
array must be at least elements long.

phaseSxy double-precision array Single-sided phase cross spectrum in
radians, showing the difference between the
phases of signal y and signal x. This array
must be at least elements long.

df double-precision Points to the frequency interval, in hertz, if
dt is in seconds.

Name Type Description

status integer Refer to Appendix A for error codes.

n 2⁄

n 2⁄

df 1 n dt×()⁄=
© National Instruments Corporation 2-99 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CrossSpectrum

 cross
CrossSpectrum
int status = CrossSpectrum (double x[], double y[], int n, double realSxy[],

double imagSxy[]);

Purpose
Calculates the double-sided cross power spectrum, Sxy, of the input sequences x and y
according to the following formula:

n must be a power of two. CrossSpectrum copies the input sequences to internal buffers
before it calculates the FFTs. The output arrays are the real and imaginary parts of the
spectrum.

Parameters
Input

Output

where n is the number of samples in both input sequences

 is the complex conjugate of FFT(x)

Name Type Description

x double-precision array Time-domain signal x.

y double-precision array Time-domain signal y.

n integer Number of elements in the input arrays.
n must be a power of 2.

Name Type Description

realSxy double-precision array Real part of the double-sided cross power
spectrum between signals x and y. The size
of this array must be n.

imagSxy double-precision array Imaginary part of the double-sided cross
power spectrum between signals x and y.
The size of this array must be n.

Sxy FFT∗ x()FFT y()
n2

---=

FFT∗ x()
LabWindows/CVI Advanced Analysis Library 2-100 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CrossSpectrum
Return Value

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-101 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxAdd
CxAdd
int status = CxAdd (double xr, double xi, double yr, double yi, double *zr,

double *zi);

Purpose
Adds two complex numbers, x and y. CxAdd obtains the resulting complex number, z, using
the following formulas:

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

zr double-precision pointer Real part of z.

zi double-precision pointer Imaginary part of z.

Name Type Description

status integer Refer to Appendix A for error codes.

zr xr yr+=

zi xi yi+=
LabWindows/CVI Advanced Analysis Library 2-102 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxAdd1D

s can
CxAdd1D
int status = CxAdd1D (double xr[], double xi[], double yr[], double yi[],

int n, double zr[], double zi[]);

Purpose
Adds two 1D complex arrays, x and y. CxAdd1D obtains the ith element of the resulting
complex array, z, using the following formulas:

CxAdd1D can perform the operations in place; that is, the input and output complex array
be the same.

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

n integer Number of elements.

Name Type Description

zr double-precision array Real part of z.

zi double-precision array Imaginary part of z.

Name Type Description

status integer Refer to Appendix A for error codes.

zri xri yri+=

zii xii yii+=
© National Instruments Corporation 2-103 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxCheckPosDef

o
CxCheckPosDef
int status = CxCheckPosDef (void *A, int n, int *positiveDefinite);

Purpose
Checks if the complex, square input matrix A is positive definite. A complex, square matrix
is positive definite if and only if it is symmetric and the quadratic form

is true for all nonzero vectors x. For more information on positive definite matrices, refer t
Matrix Computations by G.H. Golub and C.F. VanLoan.

Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

A ComplexNum 2D array Input complex, square matrix.

n integer Number of elements in one dimension of
the matrix.

Name Type Description

positiveDefinite integer 1 if the input matrix is positive definite;
0 otherwise.

Name Type Description

status integer Refer to Appendix A for error codes.

xHAx 0>
LabWindows/CVI Advanced Analysis Library 2-104 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxCholesky

trix.

es.
an

 than
CxCholesky
int status = CxCholesky (void *A, int n, void *R);

Purpose
Calculates the Cholesky factorization of a complex, symmetric positive definite input ma
If the input matrix is not positive definite, CxCholesky returns an error.

The following formula defines the Cholesky factorization of an n-by-n symmetric positive
definite matrix A:

Cholesky factorization is similar to LU factorization for symmetric positive definite matric
If the matrix in your application is positive definite, use Cholesky factorization rather th
LU factorization for the following reasons:

• The algorithm is well defined.

• Numerical stability does not require pivoting.

• Cholesky factorization requires about half the programming time and less memory
LU factorization.

Parameters
Input

Output

where R is an upper triangular matrix of dimensions n-by-n
 is the complex conjugate transpose of R

Name Type Description

A ComplexNum 2D array Input complex, square matrix.

n integer Number of elements in one dimension of
the matrix.

Name Type Description

R ComplexNum 2D array Result matrix of the Cholesky
decomposition.

A R
H

R=

R
H

© National Instruments Corporation 2-105 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxCholesky
Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-106 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxConditionNumber

with
o one
 one,
atrix
CxConditionNumber
int status = CxConditionNumber (void *A, int n, int m, int normType,

double *c);

Purpose
Calculates the condition number of a complex input matrix A. The normType parameter
indicates what type of norm to use to calculate the condition number. The input matrix A does
not need to be square when normType is 2-norm.

The following formula defines the condition number c of a matrix A:

 where is the p-norm of the matrix A

The normType value defines the type of norm. For a 2-norm normType, c is the ratio of the
largest singular value of A to the smallest singular value of A.

The condition number of a matrix indicates how near to singular the matrix is. A matrix
a large condition number is nearly singular, and a matrix with a condition number close t
is far from singular. The condition number of a matrix is always greater than or equal to
and it can help assess the accuracy of a solution to a linear system of equations and m
inversion.

Parameters
Input

Output

Name Type Description

A ComplexNum 2D array Input complex, square matrix. If normType
is 2-norm, the matrix can be square or
rectangular; otherwise, it must be square.

n integer Number of rows in A.

m integer Number of columns in A.

normType integer Type of p-norm function to use to calculate
the condition number.

Name Type Description

c double-precision Complex condition number of the matrix.

c A p A 1–× p= A p
© National Instruments Corporation 2-107 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxConditionNumber
Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

The normType parameter indicates what type of norm to use to calculate the condition
number. Table 2-21 shows valid norm type values.

Name Type Description

status integer Refer to Appendix A for error codes.

Table 2-21. Valid Norm Type Values

Norm Type Value Meaning

2-norm 0 Largest singular value of A.

1-norm 1 Largest column sum of A.

Frobenius-norm 2 Square root of the sum of the diagonal elements of AHA,
where AH is the complex conjugate transpose of A.

Infinite-norm 3 Largest row sum of A.
LabWindows/CVI Advanced Analysis Library 2-108 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxDeterminant

gular
a

CxDeterminant
int status = CxDeterminant (void *A, int n, int matrixType, ComplexNum *det);

Purpose
Calculates the complex determinant of a square, complex input matrix A. The input matrix
can be upper or lower triangular, general, or positive definite. For an upper or lower trian
matrix, the determinant equals the product of the diagonal elements of the matrix. For
positive definite matrix, CxDeterminant first calculates the Cholesky factorization of the
input matrix and then calculates the determinant as the square of the determinant of R.

Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

A ComplexNum 2D array Input complex, square matrix.

n integer Number of elements in one dimension of the
matrix.

matrixType integer Type of the input matrix. Choose the matrix
type correctly because it significantly
affects the speed of computation.

Name Type Description

det ComplexNum Complex determinant.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-109 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxDeterminant
Table 2-22 shows valid matrix type values.

Table 2-22. Valid Matrix Type Values

Matrix Type Value

General matrix 0

Positive definite 1

Upper triangular 2

Lower triangular 3
LabWindows/CVI Advanced Analysis Library 2-110 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxDiv
CxDiv
int status = CxDiv (double xr, double xi, double yr, double yi, double *zr,

double *zi);

Purpose
Divides two complex numbers, x and y. CxDiv obtains the resulting complex number, z, using
the following formulas:

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

zr double-precision Real part of z.

zi double-precision Imaginary part of z.

Name Type Description

status integer Refer to Appendix A for error codes.

zr
xr yr xi yi×+×()

yr2 yi2+
---=

zi xi yr× xr yi×–()
yr2 yi2+

---=
© National Instruments Corporation 2-111 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxDiv1D
CxDiv1D
int status = CxDiv1D (double xr[], double xi[], double yr[], double yi[],

int n, double zr[], double zi[]);

Purpose
Divides two 1D complex arrays, x and y. CxDiv1D obtains the ith element of the resulting
complex array, z, using the following formulas:

zr can be in place with xr ; zi can be in place with xi.

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

n integer Number of elements.

Name Type Description

zr double-precision array Real part of z.

zi double-precision array Imaginary part of z.

Name Type Description

status integer Refer to Appendix A for error codes.

zri
xri yri× xii yii×+()

yri
2 yii

2+
---=

zii
xii yri× xri yii×–()

yri
2 yii

2+
---=
LabWindows/CVI Advanced Analysis Library 2-112 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxDotProduct
CxDotProduct
int status = CxDotProduct (ComplexNum x[], ComplexNum y[], int n,

ComplexNum *dotProduct);

Purpose
Calculates the dot product of the complex input arrays x and y. Use the following formula to
obtain the dot product d:

Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

x ComplexNum array First complex input vector.

y ComplexNum array Second complex input vector.

n integer Number of elements in each vector.

Name Type Description

dotProduct ComplexNum Complex dot product.

Name Type Description

status integer Refer to Appendix A for error codes.

d xi yi×
i 0=

n 1–

∑=
© National Instruments Corporation 2-113 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxEigenValueVector

ctors:

s.

he

CxEigenValueVector
int status = CxEigenValueVector (void *A, int n, int matrixType,

int outputChoice, ComplexNum eigenValues[],
void *eigenVectors);

Purpose
Calculates the eigenvalues and the corresponding eigenvectors x of a complex, square input
matrix A. The following formula defines the eigenvalues and the corresponding eigenve

The matrixType parameter indicates the type of the input matrix. The input matrix
can be a general or a Hermitian matrix. The outputChoice parameter determines what
CxEigenValueVector calculates. Depending on your application, you can choose to
calculate just the eigenvalues or to calculate both the eigenvalues and the eigenvector
TheeigenValues output parameter is a 1D array of n complex numbers. The eigenVectors
output parameter is an n-by-n, complex matrix (2D array) that contains the eigenvectors
of the input matrix. Each ith column of this matrix is the eigenvector that corresponds to t
ith component of the eigenValues. Each eigenvector is normalized so that its largest
component equals one.

Parameters
Input

Name Type Description

A ComplexNum 2D array Input complex, square matrix.

n integer Number of elements in one dimension of
the matrix.

matrixType integer Pass 0 for general matrix; 1 for Hermitian
matrix. Choose the matrix type correctly
because it significantly affects the speed of
computation.

outputChoice integer Pass 0 for eigenvalues only; 1 for both
eigenvalues and eigenvectors.

λ

Ax λx=
LabWindows/CVI Advanced Analysis Library 2-114 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxEigenValueVector
Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

eigenValues ComplexNum array Result eigenvalues of the input matrix.

eigenVectors ComplexNum 2D array Result eigenvectors of the input matrix.
You can pass NULL if outputChoice is 0.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-115 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxExp
CxExp
int status = CxExp (double xr, double xi, double *yr, double *yi);

Purpose
Calculates the exponential of a complex number, x. CxExp obtains the resulting complex
number, y, using the following formula:

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

Name Type Description

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

status integer Refer to Appendix A for error codes.

yr yi,() e xr xi,()=
LabWindows/CVI Advanced Analysis Library 2-116 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxGenInvMatrix

or a
 the
CxGenInvMatrix
int status = CxGenInvMatrix (void *A, int n, int matrixType, void *B);

Purpose
Calculates the inverse of a complex, square input matrix A. If B denotes the inverse of the
matrix A:

 where I is the identity matrix

The input matrix can be an upper or lower triangular matrix, a general, square matrix,
positive definite matrix. You can save significant computation time if you properly specify
input matrix type.

Parameters
Input

Output

Return Value

Name Type Description

A ComplexNum 2D array Input complex, square matrix.

n integer Number of elements in one dimension of
the matrix.

matrixType integer Type of the input matrix. Choose the matrix
type correctly because it significantly
affects the speed of computation.

Name Type Description

B ComplexNum 2D array Result complex inverse matrix.

Name Type Description

status integer Refer to Appendix A for error codes.

AB I=
© National Instruments Corporation 2-117 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxGenInvMatrix
Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Table 2-23 shows valid matrix type values.

Table 2-23. Valid Matrix Type Values

Matrix Type Value

General matrix 0

Positive definite 1

Upper triangular 2

Lower triangular 3
LabWindows/CVI Advanced Analysis Library 2-118 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxGenLinEqs

e.

ter

t, this

is an
is

e an
CxGenLinEqs
int status = CxGenLinEqs (void *A, int n, int m, ComplexNum y[],

int matrixType, ComplexNum x[]);

Purpose
Solves for the unknown vector x in the linear system of equations:

(2-1)

The input matrix can be square or rectangular. The number of elements in y must equal the
number of rows in the matrix A.

CxGenLinEqs calculates the solution using the Singular Value Decomposition techniqu

In the case of non-singular, square matrices, in which no row or column is a linear
combination of any other row or column, CxGenLinEqs solves for the unique solution x.

Two possibilities exist in the case of rectangular matrices. If the number of rows is grea
than the number of columns, the system has more equations than unknowns and is an
overdetermined system. Because the solution that satisfies Equation (2-1) might not exis
procedure finds the least square solution x, which minimizes . If the number of rows is
less than the number of columns, the system has more unknowns than equations and
underdetermined system. It might have infinite solutions that satisfy Equation (2-1). Th
procedure calculates the minimum 2-norm solution.

If the input matrix is rank deficient, CxGenLinEqs returns a warning.

The matrixType parameter specifies the type of the input matrix. The input matrix can b
upper or lower triangular matrix, a general matrix, or a positive definite matrix.

Parameters
Input

where A is the complex input matrix

y is the known vector on the right side

Name Type Description

A ComplexNum 2D array Input complex matrix. The matrix can be
square or rectangular.

n integer Number of rows in A.

m integer Number of columns in A.

Ax y=

A 2
© National Instruments Corporation 2-119 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxGenLinEqs
Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Table 2-24 shows valid matrix type values.

y ComplexNum array Complex array that contains the set of
known vector coefficients.

matrixType integer Type of the input matrix. Choose the matrix
type correctly because it significantly
affects the speed of computation.

Name Type Description

x ComplexNum array Solution to the linear system of equations.

Name Type Description

status integer Refer to Appendix A for error codes.
If the input matrix is rank-deficient,
CxGenLinEqs returns the warning
code20001 .

Table 2-24. Valid Matrix Type Values

Matrix Type Value

General matrix 0

Positive definite 1

Upper triangular 2

Lower triangular 3

Name Type Description
LabWindows/CVI Advanced Analysis Library 2-120 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxLinEv1D

rrays
CxLinEv1D
int status = CxLinEv1D (double xr[], double xi[], int n, double ar,

double ai, double br, double bi, double yr[],
double yi[]);

Purpose
Performs a complex linear evaluation of a 1D complex array, x and y. CxLinEv1D obtains the
ith element of the resulting complex array, z, using the following formulas:

CxLinEv1D can perform the operations in place; that is, the input and output complex a
can be the same.

Parameters
Input

Output

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

n integer Number of elements.

ar double-precision Real part of a.

ai double-precision Imaginary part of a.

br double-precision Real part of b.

bi double-precision Imaginary part of b.

Name Type Description

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

yri ar xri× ai xii br+×–=

yii ar xii× ai xri bi+×+=
© National Instruments Corporation 2-121 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxLinEv1D
Return Value

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-122 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxLn

CxLn
int status = CxLn (double xr, double xi, double *yr, double *yi);

Purpose
Calculates the natural logarithm of a complex number, x. CxLn obtains the resulting complex
number, y, using the following formula:

 where

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

Name Type Description

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

status integer Refer to Appendix A for error codes.

yr yi,() loge xr xi,()= e 2.178…=
© National Instruments Corporation 2-123 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxLog
CxLog
int status = CxLog (double xr, double xi, double *yr, double *yi);

Purpose
Calculates the logarithm (base 10) of a complex number, x. CxLog obtains the resulting
complex number, y, using the following formula:

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

Name Type Description

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

status integer Refer to Appendix A for error codes.

yr yi,() log10 xr xi,()=
LabWindows/CVI Advanced Analysis Library 2-124 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxLU

the

the
CxLU
int status = CxLU (void *A, int n, int p[], int *sign);

Purpose
Performs an LU decomposition on the complex, square matrix A:

On output, the U matrix occupies the upper triangular part of the input matrix, including
diagonal elements, and the L matrix occupies the lower part.

Parameters

Input

Output

Return Value

where L is an n-by-n lower triangular matrix with all diagonal elements equal to one

U is an upper triangular matrix

P is an identity matrix with some rows exchanged based on the information in
permutation vector p

Name Type Description

A ComplexNum 2D array Square matrix to factorize.

n integer Number of elements in one dimension of
the matrix.

Name Type Description

A ComplexNum 2D array LU factorized matrix.

p integer array Permutation vector.

sign integer Row exchange indicator.

Name Type Description

status integer Refer to Appendix A for error codes.

PA LU=
© National Instruments Corporation 2-125 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxLU

Parameter Discussion
After CxLU executes, p contains possible row exchange information. sign helps calculate the
determinant. indicates that there is no such exchange or that there is an even
number of such exchanges. indicates that there is an odd number of such
exchanges.

The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

sign 0=
sign 1=
LabWindows/CVI Advanced Analysis Library 2-126 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxMatrixMul
CxMatrixMul
int status = CxMatrixMul (void *X, void *Y, int n, int k, int m, void *Z);

Purpose
Multiplies two matrices. Use the following formula to obtain the output matrix:

 for

Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

X ComplexNum 2D array First matrix to multiply.

Y ComplexNum 2D array Second matrix to multiply.

n integer Number of rows in X.

k integer Number of columns in X, and number of
rows in Y.

m integer Number of columns in Y.

Name Type Description

Z ComplexNum 2D array Result of the matrix multiplication.

Name Type Description

status integer Refer to Appendix A for error codes.

zi j, xi p, yp j,×
p 0=

k 1–

∑= i 0 1 2 … n 1 j;–, , , , 0 1 2 … m 1–, , , ,= =
© National Instruments Corporation 2-127 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxMatrixMul

ing
Confirm that the matrix sizes are valid for matrix multiplication. You must meet the follow
size constraints:

• Input matrix X must be n by k.

• Input matrix Y must be k by m.

• Output matrix Z must be n by m.
LabWindows/CVI Advanced Analysis Library 2-128 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxMatrixNorm

e
CxMatrixNorm
int status = CxMatrixNorm (void *A, int n, int m, int normType, double *norm);

Purpose
Calculates the norm of the complex input matrix A. The input matrix can be square or
rectangular. The norm of a matrix is a scalar that gives some measure of the size of th
elements in the matrix. It is similar to the concept of magnitude or absolute value for
scalar numbers.

There are different ways to calculate the norm of a matrix. The normType parameter
indicates which type of norm to use to calculate the norm.

Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

A ComplexNum 2D array Input complex matrix.

n integer Number of rows in A.

m integer Number of columns in A.

normType integer Type of norm to calculate. Refer to the
following Parameter Discussion section.

Name Type Description

norm double-precision Calculated norm of the input matrix.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-129 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxMatrixNorm
The normType parameter indicates what type of norm to use to calculate the condition
number. Table 2-25 shows valid norm type values.

Table 2-25. Valid Norm Type Values

Norm Type Value Meaning

2-norm 0 Largest singular value of A.

1-norm 1 Largest column sum of A.

Frobenius-norm 2 Square root of the sum of the diagonal elements of ATA,
where AT is the complex conjugate transpose of A.

Infinite-norm 3 Largest row sum of A.
LabWindows/CVI Advanced Analysis Library 2-130 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxMatrixRank

e
 rows
nk

gular

CxMatrixRank
int status = CxMatrixRank (void *A, int n, int m, double tolerance,

int *rank);

Purpose
Calculates the rank of the complex input matrix A. The input matrix can be square or
rectangular.

The maximum number of linearly independent rows or columns of the matrix defines th
rank of a matrix. The rank is always less than or equal to the minimum of the number of
and columns of the matrix. If the rank equals this minimum value, the matrix is a full-ra
matrix. Otherwise, it is a rank-deficient matrix.

The rank of a matrix can be calculated in a number of ways. CxMatrixRank first calculates
the singular values of the input matrix and then calculates the rank as the number of sin
values of the input matrix that are larger than the input tolerance.

You must specify the input tolerance as a positive number close to machine precision.
If the matrix in your application is a full-rank matrix, any small value of tolerance gives the
same rank . If the matrix in your application is a rank-deficient matrix, different values of
tolerance can result in different values of rank .

Parameters
Input

Output

Name Type Description

A ComplexNum 2D array Input complex matrix.

n integer Number of rows in A.

m integer Number of columns in A.

tolerance double-precision Tolerance value. Refer to the following
Parameter Discussion section.

Name Type Description

rank integer Rank of the input matrix.
© National Instruments Corporation 2-131 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxMatrixRank

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Matrix rank is the number of singular values in the input matrix that are larger than the
tolerance. Set tolerance close to eps, which is the smallest possible double-precision,
floating-point number.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-132 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxMul
CxMul
int status = CxMul (double xr, double xi, double yr, double yi, double *zr,

double *zi);

Purpose
Multiplies two complex numbers, x and y. CxMul obtains the resulting complex number, z,
using the following formulas:

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

zr double-precision Real part of z.

zi double-precision Imaginary part of z.

Name Type Description

status integer Refer to Appendix A for error codes.

zr xr yr× xi yi×–=

zi xr yi× xi yr×+=
© National Instruments Corporation 2-133 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxMul1D

s can
CxMul1D
int status = CxMul1D (double xr[], double xi[], double yr[], double yi[],

int n, double zr[], double zi[]);

Purpose
Multiplies two 1D complex arrays, x and y. CxMul1D obtains the ith element of the resulting
complex array, z, using the following formulas:

CxMul1D can perform the operations in place; that is, the input and output complex array
be the same.

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

n integer Number of elements.

Name Type Description

zr double-precision array Real part of z.

zi double-precision array Imaginary part of z.

Name Type Description

status integer Refer to Appendix A for error codes.

zri xri yri× xii yii×–=

zii xri yii× xii yri×+=
LabWindows/CVI Advanced Analysis Library 2-134 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxOuterProduct
CxOuterProduct
int status = CxOuterProduct (ComplexNum x[], int nx, ComplexNum y[], int ny,

void *outerProduct);

Purpose
Calculates the outer product of the complex input vectors x and y.

Let represent the elements of the nx-element vector x for

Let represent the elements of the ny-element vector y for

The outer product of these two vectors is a matrix O of dimensions n-by-m, where the (i, j)th
element of O is given by:

Parameters
Input

Output

Return Value

Name Type Description

x ComplexNum array Input complex vector x.

nx integer Number of elements in x.

y ComplexNum array Input complex vector y.

ny integer Number of elements in y.

Name Type Description

outerProduct ComplexNum 2D array Calculated outer product matrix.

Name Type Description

status integer Refer to Appendix A for error codes.

xi i 0 1 2 … nx 1.–, , , ,=

yj j 0 1 2 … ny 1.–, , , ,=

oi j, xi yj×=
© National Instruments Corporation 2-135 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxOuterProduct
Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;
LabWindows/CVI Advanced Analysis Library 2-136 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxPolyRoots

s.
ss
CxPolyRoots
int status = CxPolyRoots (double x[], int n, ComplexNum y[]);

Purpose
Calculates the roots of a polynomial. The polynomial coefficients must be real number
The roots can be complex or real. The number of roots of the polynomial equals one le
than the number of coefficients of the polynomial. Consider the following example:

For this example, the elements of the input array x are [1, 7, 10]. The parameter n represents
the number of coefficients, which is three. The output parameter y contains the roots of this
polynomial, which are [–5, –2].

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Array of polynomial coefficients. The
highest order coefficient is the first element
in the array.

n integer Number of coefficients in x.

Name Type Description

y ComplexNum array Array of polynomial roots. Contains
elements. The roots can be complex. Real
roots have a zero imaginary part.

Name Type Description

status integer Refer to Appendix A for error codes.

P x() x2 7x 10+ +=

n 1–
© National Instruments Corporation 2-137 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxPolyRoots
Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;
LabWindows/CVI Advanced Analysis Library 2-138 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxPow
CxPow
int status = CxPow (double xr, double xi, double a, double *yr, double *yi);

Purpose
Calculates the power of a complex number, x. CxPow obtains the resulting complex number,y,
using the following formula:

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

a double-precision Exponent.

Name Type Description

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

status integer Refer to Appendix A for error codes.

yr yi,() xr xi,()a=
© National Instruments Corporation 2-139 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxPseudoInverse

r
ou

e
ly,
g the

re and

e
CxPseudoInverse
int status = CxPseudoInverse (void *A, int n, int m, double tolerance,

void *B);

Purpose
Calculates the generalized inverse of the complex input matrix A. The input matrix can be
square or rectangular. The dimensions of the input matrix A are n-by-m. The dimensions of
the output matrix (inverse) B are m-by-n.

Note In the case of rectangular matrices with (number of rows less than numbe
of columns), take the complex conjugate transpose of the input matrix before y
pass it to CxPseudoInverse . The actual pseudoinverse is then the complex
conjugate transpose of the matrix calculated by CxPseudoInverse .

CxPseudoInverse uses the Singular Value Decomposition (SVD) technique. Define th
pseudoinverse of a scalar s to be if s does not equal zero, and zero otherwise. Similar
define the pseudoinverse of a diagonal matrix by transposing the matrix and then takin
scalar pseudoinverse of each entry. If denotes the pseudoinverse of a matrix A whose
singular value decomposition is given by:

then:

where is the pseudoinverse of the diagonal matrix S that contains the singular values of A

The pseudoinverse exists for square and rectangular matrices. If the input matrix is squa
nonsingular, the pseudoinverse is the same as the general matrix inverse.

Note Do not use CxPseudoInverse to calculate the inverse of a square matrix becaus
it takes more time. Use CxGenInvMatrix instead.

The tolerance parameter must be a small positive number close to machine precision.
CxPseudoInverse sets all singular values of the input matrix smaller than tolerance equal
to zero.

n m<

1 s⁄

A†

A USV
T=

A† US†VT=

S†
LabWindows/CVI Advanced Analysis Library 2-140 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxPseudoInverse
Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

The value of tolerance determines the level of accuracy in your final solution. Set tolerance
close to eps, which is the smallest possible double-precision, floating-point number.

Name Type Description

A ComplexNum 2D array Input complex matrix.

n integer Number of rows in A.

m integer Number of columns in A.

tolerance double-precision Tolerance value. Refer to the following
Parameter Discussion section.

Name Type Description

B ComplexNum 2D array Calculated pseudoinverse matrix.
It is m-by-n.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-141 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxQR

e
CxQR
int status = CxQR (void *A, int n, int m, void *Q, void *R);

Purpose
Calculates the QR factorization of the complex input matrix A. The input matrix can be
square or rectangular.

The following formula defines the QR factorization of a n-by-m matrix A such that:

In general, QR factorization can be calculated in many different ways. In CxQR,
QR factorization uses the Householder algorithm. You can use QR factorization to solv
linear systems with more equations than unknowns.

Parameters
Input

Output

Return Value

where Q is an orthogonal matrix of dimensions n-by-n
R is an upper triangular matrix of dimensions n-by-m

Name Type Description

A ComplexNum 2D array Input complex matrix.

n integer Number of rows in A.

m integer Number of columns in A.

Name Type Description

Q ComplexNum 2D array Calculated orthogonal matrix of the
QR factorization.

R ComplexNum 2D array Calculated upper triangular matrix of the
QR factorization.

Name Type Description

status integer Refer to Appendix A for error codes.

A QR=
LabWindows/CVI Advanced Analysis Library 2-142 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxQR
Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;
© National Instruments Corporation 2-143 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxRecip
CxRecip
int status = CxRecip (double xr, double xi, double *yr, double *yi);

Purpose
Finds the reciprocal of a complex number, x. CxRecip obtains the resulting complex
number,y, using the following formulas:

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

Name Type Description

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

status integer Refer to Appendix A for error codes.

yr xr

xr2 xi2+
---------------------=

yi xi–

xr2 xi2+
---------------------=
LabWindows/CVI Advanced Analysis Library 2-144 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxSpecialMatrix

CxSpecialMatrix
int status = CxSpecialMatrix (int matrixType, int m, ComplexNum x[], int nx,

ComplexNum y[], int ny, void *Z);

Purpose
Generates a special type of complex matrix depending on the value of matrixType . There are
five possible matrix types: Identity, Diagonal, Toeplitz, Vandermonde, and Companion.
Table 2-26 shows each matrix type and its behavior.

Table 2-26. Matrix Types and Behaviors

Matrix Type Behavior

Identity CxSpecialMatrix generates an m-by-m identity matrix.

Diagonal CxSpecialMatrix generates an nx-by-nx diagonal matrix with
diagonal elements that are the elements of x.

Toeplitz CxSpecialMatrix generates an nx-by-ny Toeplitz matrix, which has
x as its first column and y as its first row. If the first element of x and y
are different, CxSpecialMatrix uses the first element of x.

Vandermonde CxSpecialMatrix generates an nx-by-nx Vandermonde matrix
in which the kth column, for , equals
the power of the elements of x. The elements of a
Vandermonde matrix are defined as follows:

 where

Companion CxSpecialMatrix generates an -by- companion
matrix. Assuming that the vector x consists of polynomial coefficients
where the first element of x is the coefficient of the highest order
and the last element of x is the constant term in the polynomial,
CxSpecialMatrix constructs the corresponding companion matrix
as follows:

The first row of the matrix is

 for

and the remaining rows of the generated matrix form an identity
matrix. The eigenvalues of a companion matrix are the roots of the
corresponding polynomial.

k 0 1 2 … nx 1–, , , ,=
nx k 1th––

bi j, xi
nx j– 1–= i j, 0 1 … nx 1–, , ,=

nx 1–() nx 1–()

b0 j 1–,
xj–

x0
-------= j 1 2 … nx 1–, , ,=
© National Instruments Corporation 2-145 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxSpecialMatrix

l
Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

matrixType integer Type of matrix to generate. Refer to the
following Parameter Discussion section.

m integer Number of rows and columns to generate
when matrixType is Identity matrix.

x ComplexNum array Complex vector used to generate a Diagona
matrix, Toeplitz matrix, Vandermonde
matrix, or Companion matrix.

nx integer Number of elements in vector x.

y ComplexNum array Second vector to use to generate the
Toeplitz matrix.

ny integer Number of elements in vector y.

Name Type Description

Z integer Generated matrix.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-146 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxSpecialMatrix
Table 2-27 shows valid matrix type values.

Table 2-27. Valid Matrix Type Values

Matrix Type Value

Identity matrix 0

Diagonal matrix 1

Toeplitz matrix 2

Vandermonde matrix 3

Companion matrix 4
© National Instruments Corporation 2-147 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxSqrt
CxSqrt
int status = CxSqrt (double xr, double xi, double *yr, double *yi);

Purpose
Calculates the square root of a complex number, x. CxSqrt obtains the resulting complex
number, y, using the following formula:

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

Name Type Description

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

status integer Refer to Appendix A for error codes.

yr yi,() xr xi,()1 2⁄=
LabWindows/CVI Advanced Analysis Library 2-148 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxSub
CxSub
int status = CxSub (double xr, double xi, double yr, double yi, double *zr,

double *zi);

Purpose
Subtracts two complex numbers, x and y. The resulting complex number, z, is obtained using
the following formulas:

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision Real part of x.

xi double-precision Imaginary part of x.

yr double-precision Real part of y.

yi double-precision Imaginary part of y.

Name Type Description

zr double-precision Real part of z.

zi double-precision Imaginary part of z.

Name Type Description

status integer Refer to Appendix A for error codes.

zr xr yr–=

zi xi yi–=
© National Instruments Corporation 2-149 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxSub1D

s can
CxSub1D
int status = CxSub1D (double xr[], double xi[], double yr[], double yi[],

int n, double zr[], double zi[]);

Purpose
Subtracts two 1D complex arrays, x and y. CxSub1D obtains the ith element of the resulting
complex array, z, using the formulas:

CxSub1D can perform the operations in place; that is, the input and output complex array
be the same.

Parameters
Input

Output

Return Value

Name Type Description

xr double-precision array Real part of x.

xi double-precision array Imaginary part of x.

yr double-precision array Real part of y.

yi double-precision array Imaginary part of y.

n integer Number of elements.

Name Type Description

zr double-precision array Real part of z.

zi double-precision array Imaginary part of z.

Name Type Description

status integer Refer to Appendix A for error codes.

zri xri yri–=

zii xii yii–=
LabWindows/CVI Advanced Analysis Library 2-150 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxSVD

 least
t can
CxSVD
int status = CxSVD (void *A, int n, int m, void *U, ComplexNum s[], void *V);

Purpose
Calculates the Singular Value Decomposition (SVD) factorization of the complex input
matrix A. The input matrix can be square or rectangular.

The following formula defines the SVD factorization of an n-by-m matrix A:

represents the complex conjugate transpose of V. The diagonal elements of S are called
the singular values of A and are arranged in descending order. CxSVD stores the diagonal
elements of S in the output array s.

The Singular Value Decomposition is an eigenvalue-like decomposition for rectangular
matrices. You can use it to calculate the condition number of a matrix or to solve linear,
square problems. SVD is useful for ill-conditioned or rank-deficient problems because i
detect small singular values.

Parameters
Input

where U is an orthogonal matrix of dimensions n-by-m
V is an orthogonal matrix of dimensions m-by-m
S is a diagonal matrix of dimensions m-by-m

Name Type Description

A ComplexNum 2D array Input complex matrix.

n integer Number of rows in A.

m integer Number of columns in A.

A USV
H=

VH
© National Instruments Corporation 2-151 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxSVD
Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

U ComplexNum 2D array The n-by-m orthogonal matrix
SVD factorization generates.

s ComplexNum array Array that contains the singular values
of A, in descending order.

V ComplexNum 2D array The m-by-m orthogonal matrix
SVD factorization generates.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-152 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxSVDS

ix
CxSVDS
int status = CxSVDS (void *A, int n, int m, ComplexNum s[]);

Purpose
CxSVDS is similar to CxSVD, but it calculates only the singular values that result from the
Singular Value Decomposition factorization of the complex input matrix. The input matr
can be square or rectangular.

Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

A ComplexNum 2D array Input complex matrix.

n integer Number of rows in A.

m integer Number of columns in A.

Name Type Description

s ComplexNum array Array that contains the singular values of A,
in descending order.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-153 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — CxTrace

onal
CxTrace
int status = CxTrace (void *A, int n, int m, ComplexNum *trace);

Purpose
Calculates the trace of a complex matrix. The trace of a matrix is the sum of all its diag
elements.

CxTrace uses the following formula to obtain trace t:

 where

Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

A ComplexNum 2D array Input complex matrix.

n integer Number of rows in A.

m integer Number of columns in A.

Name Type Description

trace ComplexNum Sum of the diagonal elements of A.

Name Type Description

status integer Refer to Appendix A for error codes.

t ai i,
i 0=

k 1–

∑= k min n m,()=
LabWindows/CVI Advanced Analysis Library 2-154 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — CxTranspose

ing
CxTranspose
int status = CxTranspose (void *A, int n, int m, void *B);

Purpose
Calculates the complex conjugate transpose of a 2D, complex input matrix. The follow
formula defines the (i, j)th element of the resulting matrix:

 where * denotes a complex conjugate

If is a complex number, then is the complex conjugate of z.

Parameters
Input

Output

Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

A ComplexNum 2D array Input complex matrix.

n integer Number of rows in A.

m integer Number of columns in A.

Name Type Description

B ComplexNum Calculated complex conjugate transpose
matrix.

Name Type Description

status integer Refer to Appendix A for error codes.

bi j, aj i, ∗=

z x j y×+= x j y×–
© National Instruments Corporation 2-155 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Decimate

t
Decimate
int status = Decimate (double x[], int n, int dFact, int ave, double y[]);

Purpose
Decimates the input sequence x by the decimating factor. If y represents the decimated outpu
sequence, Decimate obtains the elements of the sequence y using the following formula:

Parameters
Input

Output

Return Value

where

 is the size of the output sequence

Name Type Description

x double-precision array Contains the input array to decimate.

n integer Number of elements in the input array.

dFact integer Amount by which to decimate x to form y.

ave integer Specifies whether to use averaging in
decimating x.

Name Type Description

y double-precision array Contains the output array, which is x
decimated by the dFact. The size of this
array must be .

Name Type Description

status integer Refer to Appendix A for error codes.

yi

xi dFact× ave 0=

1
dFact
--------------- xi dFact× k+

k 0=

dFact 1–

∑ ave 1=

=

i 0 1 2 … size 1–, , , ,=

size int n dFact⁄()=

int n dFact⁄()
LabWindows/CVI Advanced Analysis Library 2-156 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Deconvolve
Deconvolve
int status = Deconvolve (double y[], int ny, double x[], int nx, double h[]);

Purpose
Calculates the deconvolution of y with x. Deconvolve assumes y to be the result of the
convolution of x with some system response. The function realizes the deconvolution
operation using Fourier transform pairs. Deconvolve obtains the output sequence h using the
following formula:

Parameters
Input

Output

Return Value

where X(f) is the Fourier transform of x
Y(f) is the Fourier transform of y
InvFFT() is the inverse Fourier transform

Name Type Description

y double-precision array Input array to deconvolve with x.

ny integer Number of elements in y.

x double-precision array Input array with which to deconvolve y.

nx integer Number of elements in x.

Name Type Description

h double-precision array Output array that is y deconvolved with x.
This array must be
elements long.

Name Type Description

status integer Refer to Appendix A for error codes.

h InvFFT
Y f()
X f()

 =

nx ny≤

ny nx– 1+()
© National Instruments Corporation 2-157 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Determinant
Determinant
int status = Determinant (void *x, int n, double *det);

Purpose
Finds the determinant of an n-by-n 2D input matrix.

Parameters
Input

Output

Note The input matrix must be an n-by-n square matrix.

Return Value

Name Type Description

x double-precision
2D array

Input matrix.

n integer Dimension size of input matrix.

Name Type Description

det double-precision Determinant.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-158 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Difference
Difference
int status = Difference (double x[], int n, double dt, double xInit,

double xFinal, double y[]);

Purpose
Finds the discrete difference of the input array. Difference obtains the ith element of the
resulting array using the following formula:

 where and

Difference can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

dt double-precision Sampling interval.

xInit double-precision Initial condition.

xFinal double-precision Final condition.

Name Type Description

y double-precision array Differentiated array.

Name Type Description

status integer Refer to Appendix A for error codes.

yi

xi 1+ xi 1––

2dt
--------------------------= x 1– xInt= xn xFinal=
© National Instruments Corporation 2-159 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Difference
Example
/* Generate an array with random numbers and differentiate it. */

double x[200], y[200];

double dt, xInit, xFinal;

int n;

n = 200;

dt = 0.001;

xInit = -0.5;

xFinal = -0.25;

Uniform (n, 17, x);

Integrate (x, n, dt, xInit, xFinal, y);
LabWindows/CVI Advanced Analysis Library 2-160 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Div1D
Div1D
int status = Div1D (double x[], double y[], int n, double z[]);

Purpose
Divides two 1D arrays, x and y. Div1D obtains the i th element of the output array, z, using the
following formula:

Div1D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array x input array.

y double-precision array y input array.

n integer Number of elements to divide.

Name Type Description

z double-precision array Result array.

Name Type Description

status integer Refer to Appendix A for error codes.

zi

xi

yi
----=
© National Instruments Corporation 2-161 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Div2D
Div2D
int status = Div2D (void *x, void *y, int n, int m, void *z);

Purpose
Divides two 2D arrays. Div2D obtains the (i, j)th element of the output array using the
following formula:

Div2D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision
2D array

x input array.

y double-precision
2D array

y input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

z double-precision
2D array

Result array.

Name Type Description

status integer Refer to Appendix A for error codes.

zi j,
xi j,

yi j,
-------=
LabWindows/CVI Advanced Analysis Library 2-162 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — DotProduct
DotProduct
int status = DotProduct (double x[], double y, int n, double *dotProd);

Purpose
Calculates the dot product of the x and y input arrays. DotProduct obtains the dot product
using the following formula:

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array x input vector.

y double-precision array y input vector.

n integer Number of elements.

Name Type Description

dotProd double-precision Dot product.

Name Type Description

status integer Refer to Appendix A for error codes.

dotProd x y• xi yi×
i 0=

n 1–

∑= =
© National Instruments Corporation 2-163 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Elp_BPF
Elp_BPF
int status = Elp_BPF (double x[], int n, double fs, double fl, double fh,

double ripple, double atten, int order,
double y[]);

Purpose
Filters the input array using a digital bandpass elliptic filter. Elp_BPF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

ripple double-precision Pass band ripples in decibels.

atten double-precision Stop band attenuation in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-164 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Elp_BPF
Example
/* Generate a random signal and filter it using a fifth-order bandpass

elliptic filter. The pass band is from 200.0 to 300.0. */

double x[256], y[256], fs, fl, fh, ripple, atten;

int n, order;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

ripple = 0.5;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

Elp_BPF (x, n, fs, fl, fh, ripple, atten, order, y);
© National Instruments Corporation 2-165 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Elp_BSF
Elp_BSF
int status = Elp_BSF (double x[], int n, double fs, double fl, double fh,

double ripple, double atten, int order,
double y[]);

Purpose
Filters the input array using a digital bandstop elliptic filter. Elp_BSF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

ripple double-precision Pass band ripples in decibels.

atten double-precision Stop band attenuation in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-166 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Elp_BSF
Example
/* Generate a random signal and filter it using a fifth-order bandstop

elliptic filter. The stop band is from 200.0 to 300.0. */

double x[256], y[256], fs, fl, fh, ripple, atten;

int n, order;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

ripple = 0.5;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

Elp_BSF (x, n, fs, fl, fh, ripple, atten, order, y);
© National Instruments Corporation 2-167 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Elp_CascadeCoef

d by

nd

re

e

Elp_CascadeCoef
int status = Elp_CascadeCoef (double fs, double fl, double fh, double ripple,

double atten, IIRFilterPtr filterInformation);

Purpose
Generates the set of cascade form filter coefficients to implement an IIR filter as specifie
the elliptic (or Cauer) filter model.

filterInformation is the pointer to the filter structure that contains the filter coefficients a
the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before calling this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter
structure and then call AllocIIRFilterPtr with the new type and order parameters befo
you call Elp_CascadeCoef .

If the type and order remain the same, you can call Elp_CascadeCoef without calling
FreeIIRFilterPtr and AllocIIRFilterPtr . In this case, you should properly reset th
filtering operation for that structure by calling ResetIIRFilter before the first call to
IIRCascadeFiltering .

Parameters
Input

Name Type Description

fs double-precision Specifies the sampling frequency in hertz.

fl double-precision Specifies the desired lower cutoff frequency
of the filter in hertz.

fh double-precision Specifies the desired upper cutoff frequency
of the filter in hertz

ripple double-precision Specifies the amplitude of the stop band
ripple in decibels.

atten double-precision Specifies the stop band attenuation, in
decibels, of the IIR filter to design.
LabWindows/CVI Advanced Analysis Library 2-168 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Elp_CascadeCoef
Output

Return Value

Example
/* Design a cascade lowpass elliptic IIR filter. */

double fs, fl, fh, ripple, atten, x[256], y[256];

int type, order, n;

IIRFilterPtr filterInfo;

n = 256;

fs = 1000.0;

fl = 200.0;

ripple = 0.5;

atten = 40.0;

order = 5;

type = 0; /* lowpass */

Uniform(n, 17, x);

filterInfo = AllocIIRFilterPtr(type, order);

if(filterInfo!=0) {

Elp_CascadeCoef(fs, fl, fh, ripple, atten, filterInfo);

IIRCascadeFiltering(x, n, filterInfo, y);

FreeIIRFilterPtr(filterInfo);

}

Name Type Description

filterInformation IIRFilterPtr Pointer to the filter structure that contains
the filter coefficients and the internal filter
information.

Refer to the AllocIIRFilterPtr
function description for more information
about the filter structure.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-169 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Elp_Coef

tic
Elp_Coef
int status = Elp_Coef (int type, int order, double fs, double fl, double fh,

double ripple, double atten, double a[], int na,
double b[], int nb);

Purpose
Generates the set of filter coefficients to implement an IIR filter as specified by the ellip
(or Cauer) filter model. type has the valid values as shown in Table 2-28.

a and b are the reverse and forward filter coefficients. Use IIRFiltering to achieve the
actual filtering:

Parameters
Input

Table 2-28. Valid type Values

Value Description

0 lowpass filter; fh is not used

1 highpass filter; fh is not used

2 bandpass filter

3 bandstop filter

Name Type Description

type integer Controls the filter type of the elliptic
IIR filter coefficients.

order integer Order of the IIR filter.

fs double-precision Sampling frequency in hertz.

fl double-precision Desired lower cutoff frequency of the filter
in hertz.

fh double-precision Desired higher cutoff frequency of the filter
in hertz.

yn
1
a0
----- bi xn i– ai yn i–

i 1=

na 1–

∑–
i 0=

nb 1–

∑

=

LabWindows/CVI Advanced Analysis Library 2-170 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Elp_Coef
Output

Return Value

ripple double-precision Amplitude of the stop band ripple
in decibels.

atten double-precision Stop band attenuation, in decibels, of the
IIR filter to be designed.

na integer Number of coefficients in the a coefficient
array.

nb integer Number of coefficients in the b coefficient
array.

Name Type Description

a double-precision array Array that contains the reverse coefficients
of the designed IIR filter.

b double-precision array Array that contains the forward coefficients
of the designed IIR filter.

Name Type Description

status integer Refer to Appendix A for error codes.

Name Type Description
© National Instruments Corporation 2-171 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Elp_HPF
Elp_HPF
int status = Elp_HPF (double x[], int n, double fs, double fc, double ripple,

double atten, int order, double y[]);

Purpose
Filters the input array using a digital highpass elliptic filter. Elp_HPF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

ripple double-precision Pass band ripples in decibels.

atten double-precision Stop band attenuation in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-172 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Elp_HPF
Example
/* Generate a random signal and filter it using a fifth-order highpass

elliptic filter. */

double x[256], y[256], fs, fc, ripple, atten;

int n, order;

n = 256;

fs = 1000.0;

fc = 200.0;

ripple = 0.5;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

Elp_HPF (x, n, fs, fc, ripple, atten, order, y);
© National Instruments Corporation 2-173 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Elp_LPF
Elp_LPF
int status = Elp_LPF (double x[], int n, double fs, double fc, double ripple,

double atten, int order, double y[]);

Purpose
Filters the input array using a digital lowpass elliptic filter. Elp_LPF can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

ripple double-precision Pass band ripples in decibels.

atten double-precision Stop band attenuation in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-174 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Elp_LPF
Example
/* Generate a random signal and filter it using a fifth-order lowpass

elliptic filter. */

double x[256], y[256], fs, fc, ripple, atten;

int n, order;

n = 256;

fs = 1000.0;

fc = 200.0;

ripple = 0.5;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

Elp_LPF (x, n, fs, fc, ripple, atten, order, y);
© National Instruments Corporation 2-175 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Equi_Ripple

g
s that
Equi_Ripple
int status = Equi_Ripple (int bands, double A[], double wts[], double fs,

double cutoffs[], int type, int n, double coef[],
double *delta);

Purpose
Designs a multiband FIR linear phase filter, a differentiator, or a Hilbert Transform usin
the Parks-McClellan algorithm. The frequency response in each band has equal ripple
you can adjust by a weighting factor. Equi_Ripple generates only the filter coefficients;
it does not actually perform data filtering.

Parameters
Input

Output

Return Value

Name Type Description

bands integer Number of bands of the filter.

A double-precision array Desired frequency response magnitude of
each band.

wts double-precision array Weighting factor for each band.

fs double-precision Sampling frequency.

cutoffs double-precision array End frequencies of each band.

type integer Filter type.

n integer Filter length.

Name Type Description

coef double-precision array Filter coefficients.

delta double-precision Normalized ripple size.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-176 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Equi_Ripple

as
ge.

stop
Parameter Discussion
Generally, when type = 1 and , Equi_Ripple designs a multiband filter.
When , , and n is even, Equi_Ripple designs a differentiator.
When , , and n is even, Equi_Ripple designs a Hilbert Transform.
For more information, refer to Digital Filter Design by Parks and Burrus or “A computer
program for designing optimum FIR linear phase digital filters,” by McClellan, et al.,
IEEE Transactions on Audio and Electroacoustics.

Using This Function
Although Equi_Ripple is the most flexible way to design an FIR linear phase filter, it h
more complex parameters and requires some digital signal processing (DSP) knowled
You might find it more convenient to use EquiRpl_LPF , EquiRpl_HPF , EquiRpl_BPF , and
EquiRpl_BSF . These functions, which provide lowpass, highpass, bandpass, and band
FIR filters with equal weighting factors in all bands, are special cases of Equi_Ripple with
simplified parameters.

For more information about windowing, refer to the About Windowing section in Chapter 1,
Advanced Analysis Library Overview.

Example 1
/* Design a 24-point lowpass filter and filter the incoming signal. */

double x[256], coef[24], y[280], fs, delta;

double A[2]; /* array of frequency responses */

double wts[2]; /* array of weighting factors */

double cutoffs[4]; /* frequency points */

int n, m;

int bands; /* number of bands */

int type; /* filter type */

bands = 2; /* one pass band and one stop band */

fs = 1000.0; /* sampling frequency */

A[0] = 1.0; /* 1 for the pass band */

A[1] = 0.0; /* 0 for the stop band */

wts[0] = 1.0; /* weighting factor for the pass band */

wts[1] = 1.0; /* weighting factor for the stop band */

cutoffs[0] = 0.0;

cutoffs[1] = 300.0; /* the first stop band [0, 300.0] */

cutoffs[2] = 400.0;

cutoffs[3] = 500.0; /* the pass band [400, 500] */

type = 1; /* multiple band filter */

n = 24; /* filter length */

m = 256;

Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */

bands 2≥
type 2= bands 1=
type 3= bands 1=
© National Instruments Corporation 2-177 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Equi_Ripple
Example 2
/* Design a 31-point bandpass filter and filter the incoming signal. */

double x[256], coef[55], y[287], fs, delta;

double A[3]; /* array of frequency responses */

double wts[3]; /* array of weighting factors */

double cutoffs[6]; /* frequency points */

int n, m;

int bands; /* number of bands */

int type; /* filter type */

bands = 3; /* one pass band and two stop bands */

fs = 1000.0; /* sampling frequency */

A[0] = 0.0; /* 0 for the first stop band */

A[1] = 1.0; /* 1 for the stop band */

A[2] = 0.0; /* 0 for second stop band */

wts[0] = 10.0; /* weighting factor for the first stop band */

wts[1] = 1.0; /* weighting factor for the pass band */

wts[2] = 4.0; /* weighting factor for the second stop band */

cutoffs[0] = 0.0;

cutoffs[1] = 200.0; /* the first stop band [0, 200.0] */

cutoffs[2] = 250.0;

cutoffs[3] = 350.0; /* the pass band [250, 350] */

cutoffs[4] = 400.0;

cutoffs[5] = 500.0; /* the second stop band */

type = 1; /* multiple band filter */

n = 31; /* filter length */

m = 256;

Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */
LabWindows/CVI Advanced Analysis Library 2-178 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Equi_Ripple
Example 3
/* Design a 30-point differentiator. */

double coef[30], fs, delta;

double A[1]; /* array of frequency responses */

double wts[1]; /* array of weighting factors */

double cutoffs[2]; /* frequency points */

int n;

int bands; /* number of bands */

int type; /* filter type */

bands = 1; /* one pass band and one stop band */

fs = 1000.0; /* sampling frequency */

A[0] = 1.0; /* 1 for the band */

wts[0] = 1.0; /* weighting factor for the band */

cutoffs[0] = 0.0;

cutoffs[1] = 500.0; /* the entire frequency range */

type = 2; /* differentiator */

n = 30; /* filter length */

Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);

Example 4
/* Design a 20-point Hilbert transform. */

double coef[20], fs, delta;

double A[1]; /* array of frequency responses */

double wts[1]; /* array of weighting factors */

double cutoffs[2]; /* frequency points */

int n;

int bands; /* number of bands */

int type; /* filter type */

bands = 1; /* one pass band and one stop band */

fs = 1000.0; /* sampling frequency */

A[0] = 1.0; /* 1 for the band */

wts[0] = 1.0; /* weighting factor for the band */

cutoffs[0] = 100.0;

cutoffs[1] = 500.0;

type = 3; /* Hilbert transform */

n = 20; /* filter length */

Equi_Ripple (bands, A, wts, fs, cutoffs, type, n, coef, &delta);
© National Instruments Corporation 2-179 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — EquiRpl_BPF

EquiRpl_BPF
int status = EquiRpl_BPF (double fs, double f1, double f2, double f3,

double f4, int n, double coef[], double *delta);

Purpose
Designs a bandpass FIR linear phase filter using the Parks-McClellan algorithm.
EquiRpl_BPF is a special case of the general Parks-McClellan algorithm. EquiRpl_BPF
generates only the filter coefficients; it does not actually perform data filtering.

Parameters
Input

Output

Return Value

Parameter Discussion
There are two stop bands and one pass band. The first stop band is [0, f1], and the second
stop band is [f4,]. The pass band is [f2, f3]. f1, f2, f3, and f4 must be in ascending order.
Refer to the Equi_Ripple function description for more information.

Name Type Description

fs double-precision Sampling frequency.

f1 double-precision Cutoff frequency 1.

f2 double-precision Cutoff frequency 2.

f3 double-precision Cutoff frequency 3.

f4 double-precision Cutoff frequency 4.

n integer Filter length.

Name Type Description

coef double-precision array Filter coefficients.

delta double-precision Normalized ripple size.

Name Type Description

status integer Refer to Appendix A for error codes.

fs 2⁄
LabWindows/CVI Advanced Analysis Library 2-180 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — EquiRpl_BPF
Example
/* Design a 51-point bandpass filter and filter the incoming signal. */

double x[256], coef[25], y[301], fs, f1, f2, f3, f4, delta;

int n, m;

fs = 1000.0; /* sampling frequency */

f1 = 200.0; /* the first stop band [0, 200] */

f2 = 250.0;

f3 = 350.0; /* the pass band [250, 350] */

f4 = 400.0; /* the second stop band [400, 500] */

n = 51; /* filter length */

m = 256;

EquiRpl_BPF (fs, f1, f2, f3, f4, n, coef, &delta);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */
© National Instruments Corporation 2-181 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — EquiRpl_BSF

EquiRpl_BSF
int status = EquiRpl_BSF (double fs, double f1, double f2, double f3,

double f4, int n, double coef[], double *delta);

Purpose
Designs a bandstop FIR linear phase filter using the Parks-McClellan algorithm.
EquiRpl_BSF is a special case of the general Parks-McClellan algorithm. EquiRpl_BSF
generates only the filter coefficients; it does not actually perform data filtering.

Parameters
Input

Output

Return Value

Parameter Discussion
There are two pass bands and one stop band. The first pass band is [0, f1], and the second
pass band is [f4,]. The stop band is [f2, f3]. f1, f2, f3, and f4 must be in ascending order.
Refer to the Equi_Ripple function description for more information.

Name Type Description

fs double-precision Sampling frequency.

f1 double-precision Cutoff frequency 1.

f2 double-precision Cutoff frequency 2.

f3 double-precision Cutoff frequency 3.

f4 double-precision Cutoff frequency 4.

n integer Filter length.

Name Type Description

coef double-precision array Filter coefficients.

delta double-precision Normalized ripple size.

Name Type Description

status integer Refer to Appendix A for error codes.

fs 2⁄
LabWindows/CVI Advanced Analysis Library 2-182 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — EquiRpl_BSF
Example
/* Design a 51-point bandstop filter and filter the incoming signal. */

double x[256], coef[25], y[301], fs, f1, f2, f3, f4, delta;

int n, m;

fs = 1000.0; /* sampling frequency */

f1 = 200.0; /* the first pass band [0, 200] */

f2 = 250.0;

f3 = 350.0; /* the stop band [250, 350] */

f4 = 400.0; /* the second pass band [400, 500] */

n = 51; /* filter length */

m = 256;

EquiRpl_BSF (fs, f1, f2, f3, f4, n, coef, &delta);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */
© National Instruments Corporation 2-183 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — EquiRpl_HPF
EquiRpl_HPF
int status = EquiRpl_HPF (double fs, double f1, double f2, int n,

double coef [], double *delta);

Purpose
Designs a highpass FIR linear phase filter using the Parks-McClellan algorithm.
EquiRpl_HPF is a special case of the general Parks-McClellan algorithm. EquiRpl_HPF
generates only the filter coefficients; it does not actually perform data filtering.

Parameters
Input

Output

Return Value

Parameter Discussion
There is one stop band and one pass band. The stop band is [0, f1], and the pass band is
[f2,]. Refer to the Equi_Ripple function description for more information.

Name Type Description

fs double-precision Sampling frequency.

f1 double-precision Cutoff frequency 1.

f2 double-precision Cutoff frequency 2.

n integer Filter length.

Name Type Description

coef double-precision array Filter coefficients.

delta double-precision Normalized ripple size.

Name Type Description

status integer Refer to Appendix A for error codes.

fs 2⁄
LabWindows/CVI Advanced Analysis Library 2-184 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — EquiRpl_HPF
Example
/* Design a 25-point highpass filter and filter the incoming signal. */

double x[256], coef[25], y[281], fs, f1, f2, delta;

int n, m;

fs = 1000.0; /* sampling frequency */

f1 = 300.0; /* the stop band [0, 300] */

f2 = 400.0; /* the pass band [400, 500] */

n = 25; /* filter length */

m = 256;

EquiRpl_HPF (fs, f1, f2, n, coef, &delta);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */
© National Instruments Corporation 2-185 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — EquiRpl_LPF
EquiRpl_LPF
int status = EquiRpl_LPF (double fs, double f1, double f2, int n,

double coef[], double *delta);

Purpose
Designs a lowpass FIR linear phase filter using the Parks-McClellan algorithm.
EquiRpl_LPF is a special case of the general Parks-McClellan algorithm. EquiRpl_LPF
generates only the filter coefficients; it does not actually perform data filtering.

Parameters
Input

Output

Return Value

Parameter Discussion
There is one pass band and one stop band. The pass band is [0, f1], and the stop band is
[f2,]. Refer to the Equi_Ripple function description for more information.

Name Type Description

fs double-precision Sampling frequency.

f1 double-precision Cutoff frequency 1.

f2 double-precision Cutoff frequency 2.

n integer Filter length.

Name Type Description

coef double-precision array Filter coefficients.

delta double-precision Normalized ripple size.

Name Type Description

status integer Refer to Appendix A for error codes.

fs 2⁄
LabWindows/CVI Advanced Analysis Library 2-186 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — EquiRpl_LPF
Example
/* Design a 25-point lowpass filter and filter the incoming signal. */

double x[256], coef[25], y[281], fs, f1, f2, delta;

int n, m;

fs = 1000.0; /* sampling frequency */

f1 = 300.0; /* the pass band [0, 300] */

f2 = 400.0; /* the stop band [400, 500] */

n = 25; /* filter length */

m = 256;

EquiRpl_LPF (fs, f1, f2, n, coef, &delta);

Convolve (coef, n, x, m, y);/* Convolve the filter with the signal. */
© National Instruments Corporation 2-187 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ExBkmanWin
ExBkmanWin
int status = ExBkmanWin (double x[], int n);

Purpose
Applies an exact Blackman window to the input sequence x. If y represents the output
sequence, ExBkmanWin obtains the elements of y using the following formula:

 for

Parameters
Input

Output

Return Value

where

Name Type Description

x double-precision array Contains the input signal.

n integer Number of elements in the input array.

Name Type Description

x double-precision array Contains the signal after ExBkmanWin
applies the exact Blackman window.

Name Type Description

status integer Refer to Appendix A for error codes.

yi xi a0 a1
2πi
n

 a2

4πi
n

 cos×+cos×–

 = i 0 … n 1–, ,=

a0
7938.0
18608.0
-------------------=

a1
9240.0
18608.0
-------------------=

a2
1430.0
18608.0
-------------------=
LabWindows/CVI Advanced Analysis Library 2-188 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ExpFit

ExpFit
int status = ExpFit (double x[], double y[], int n, double z[], double *a,

double *b, double *mse);

Purpose
Finds the coefficient values that best represent the exponential fit of the data points (x, y)
using the least squares method. ExpFit obtains the ith element of the output array using the
following formula:

ExpFit obtains the mean squared error (mse) using the following formula:

 where n is the number of sample points

Parameters
Input

Output

Note The y values must be all positive or all negative to perform an exponential fit.

Name Type Description

x double-precision array x values.

y double-precision array y values.

n integer Number of sample points.

Name Type Description

z double-precision array Best exponential fit.

a double-precision Amplitude.

b double-precision Exponential constant.

mse double-precision Mean squared error.

zi ae
bxi=

mse

zi yi– 2

i 0=

n 1–

∑
n

----------------------------=
© National Instruments Corporation 2-189 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ExpFit
Return Value

Example
/* Generate an exponential pattern and find the best exponential

fit. */

double x[200], y[200], z[200];

double first, last, a, b, amp, decay, mse;

int n;

n = 200;

first = 0.0;

last = 1.99E2;

Ramp (n, first, last, x); /* x[i] = i */

a = 3.5;

b = -2.75;

for (i=0; i<n; i++)

 y[i] = a * exp(b*x[i]);

/* Find the best exponential fit in z. */

ExpFit (x, y, n, z, &, &decay, &mse);

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-190 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ExpWin

,
ExpWin
int status = ExpWin (double x[], int n, double final);

Purpose
Applies an exponential window to the input sequence x. If y represents the output sequence
ExpWin obtains the elements of y using the following formula:

where

Parameters
Input

Output

Return Value

f is the final value

n is the number of elements in x

Name Type Description

x double-precision array On input, x contains the input signal.

n integer Number of elements in the input array.

final double-precision Final value of the exponential window
function.

Name Type Description

x double-precision array On output, x contains the signal after
ExpWin applies the exponential window.

Name Type Description

status integer Refer to Appendix A for error codes.

yi xi e
ai=

a
f()ln

n 1–
-------------=
© National Instruments Corporation 2-191 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — F_Dist
F_Dist
int status = F_Dist (double f, int n, int m, double *p);

Purpose
Calculates the one-sided probability p:

where F is a random variable from the F-distribution with n and m degrees of freedom

Parameters
Input

Output

Return Value

Example
double x, p;

int n, m;

x = -123.456;

n = 6;

m = 7;

F_Dist (x, n, m, &p);

/* Now p = 0 because F-distributed variables are non-negative. */

Name Type Description

f double-precision .

n integer Degrees of freedom.

m integer Degrees of freedom.

Name Type Description

p double-precision Probability .

Name Type Description

status integer Refer to Appendix A for error codes.

p prob F f≤()=

∞– f ∞< <

0 p 1<≤()
LabWindows/CVI Advanced Analysis Library 2-192 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — FFT
FFT
int status = FFT (double x[], double y[], int n);

Purpose
Calculates the Fast Fourier Transform of the complex data. Let be the
complex array:

FFT can perform the operation in place and overwrite the input arrays x and y. Refer to the
About the Fast Fourier Transform (FFT) section in Chapter 1, Advanced Analysis Library
Overview.

Parameters
Input

Output

Note n must be a power of two.

Return Value

Name Type Description

x double-precision array Real part of complex array.

y double-precision array Imaginary part of complex array.

n integer Number of elements.

Name Type Description

x double-precision array Real part of FFT.

y double-precision array Imaginary part of FFT.

Name Type Description

status integer Refer to Appendix A for error codes.

X x jy+=

Y FFT X()=
© National Instruments Corporation 2-193 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — FFT
Example
/* Generate two arrays with random numbers and calculate the Fast

Fourier Transform. */

double x[256], y[256];

int n;

n = 256;

Uniform (n, 17, x);

Uniform (n, 17, y);

FFT (x, y, n);
LabWindows/CVI Advanced Analysis Library 2-194 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — FHT
FHT
int status = FHT (double x[], int n);

Purpose
Calculates the Fast Hartley Transform using the following formula:

FHT can perform the operation in place and overwrite the x input array.

Parameters
Input

Output

Note n must be a power of two.

Return Value

where Xk is the kth point of the FHT

Name Type Description

x double-precision array Array to transform.

n integer Number of elements.

Name Type Description

x double-precision array Hartley Transform.

Name Type Description

status integer Refer to Appendix A for error codes.

Xk xicas
2πik

n

i 0=

n 1–

∑=

cas k() k()cos k()sin+=
© National Instruments Corporation 2-195 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — FHT
Example
/* Generate an array with random numbers and calculate its Fast Hartley

Transform. */

double x[256];

int n;

n = 256;

Uniform (n, 17, x);

FHT (x, n);
LabWindows/CVI Advanced Analysis Library 2-196 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — FIR_Coef

nse of
FIR_Coef
int status = FIR_Coef (int type, double fs, double fl, double fh, int taps,

double coef[]);

Purpose
Generates a set of FIR filter coefficients based on the window design method. FIR_Coef
returns the coefficients as the truncated impulse response of an ideal frequency respo
the selected filter type. type has the valid values shown in Table 2-29.

Use Convolve to achieve the actual filtering:

Parameters
Input

Table 2-29. Valid type Values

Value Description

0 lowpass filter; fh is not used

1 highpass filter; fh is not used

2 bandpass filter

3 bandstop filter

Name Type Description

type integer Controls the filter type of the FIR filter
coefficients to design.

fs double-precision Sampling frequency in hertz.

fl double-precision Desired lower cutoff frequency in hertz.

fh double-precision Desired upper cutoff frequency in hertz.

taps integer Desired length of the FIR filter.

yn coefi xn 1–×
i 0=

taps 1–

∑=
© National Instruments Corporation 2-197 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — FIR_Coef
Output

Return Value

Name Type Description

coef double-precision array Calculated output window FIR filter
coefficients.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-198 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — FlatTopWin
FlatTopWin
int status = FlatTopWin (double x[], int n);

Purpose
Applies a flat top window to the input sequence x. If y represents the output sequence,
FlatTopWin obtains the elements of y using the following formula:

where n is the number of elements in x

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array On input, x contains the input signal.

n integer Number of elements in the input array.

Name Type Description

x double-precision array On output, x contains the signal after
FlatTopWin applies the flat top window.

Name Type Description

status integer Refer to Appendix A for error codes.

yi xi 0.2810639 0.5208972
2πi
n

 0.1980399

4πi
n

 cos+cos–

 =
© National Instruments Corporation 2-199 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ForceWin
ForceWin
int status = ForceWin (double x[], int n, double duty);

Purpose
Applies a force window to the input sequence x:

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array On input, x contains the input signal.

n integer Number of elements in the input array.

duty double-precision Duty cycle, in percent, of the force window.

Name Type Description

x double-precision array On output, x contains the signal after
ForceWin applies the force window.

Name Type Description

status integer Refer to Appendix A for error codes.

xi
xi 0 i int

duty
100

 n×
 ≤ ≤

0 elsewhere

=

LabWindows/CVI Advanced Analysis Library 2-200 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ForwSub
ForwSub
int status = ForwSub (void *a, double y[], int n, double x[], int p[]);

Purpose
Solves the linear equations by forward substitution. ForwSub assumes a to be an
n-by-n lower triangular matrix with all diagonal elements equal to one. ForwSub obtains x
using the following formulas:

 for

ForwSub can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

a double-precision
2D array

Input matrix.

y double-precision array Input vector.

n integer Dimension size of a.

p integer array Permutation vector.

Name Type Description

x double-precision array Solution vector.

Name Type Description

status integer Refer to Appendix A for error codes.

a x× y=

x0 y0=

xi yi ai j, xj×
j 0=

i 1–

∑–= i 1 2 … n 1–, , ,=
© National Instruments Corporation 2-201 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ForwSub
Using This Function
Use ForwSub in conjunction with LU and BackSub to solve linear equations. ForwSub
obtains the parameter p from LU. If you are not using LU, set .

Refer to the LU function description for more information.

Example
/* to solve a linear equation A*x = y */

double A[10][10], x[10], y[10];

int p[10]; /* permutation vector */

int sign, n;

n = 10;

LU (A, n, p, &sign); /* LU decomposition of A */

ForwSub (A, y, n, x, p); /* forward substitution */

BackSub (A, x, n, x); /* backward substitution */

pi i=
LabWindows/CVI Advanced Analysis Library 2-202 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — FreeAnalysisMem
FreeAnalysisMem
void FreeAnalysisMem (void *pointer);

Purpose
Frees the memory that PeakDetector allocated internally for the output arguments.

Parameter
Input

Return Value

Parameter Discussion
The following code example shows how to use FreeAnalysisMem in conjunction with
PeakDetector .

main()

{

double *x = NULL;

double *amplitudes = NULL;

double *locations = NULL;

double *secondDerivatives = NULL;

int err = 0;

int xSize;

/* Insert code here to determine xSize. */

x = (double *)malloc (xSize * sizeof(double));

err = PeakDetector(x, xSize, 0.01, 3, 0, 1, 0, &count, &locations,

&litudes, &secondDerivatives);

/* Memory is allocated internally by the PeakDetector function for

the locations, amplitudes and second_derivatives outputs. Use the

FreeAnalysisMem function to free this memory. */

FreeAnalysisMem(locations);

FreeAnalysisMem(amplitudes);

FreeAnalysisMem(secondDerivatives);

}

Name Type Description

pointer void pointer Pointer to memory to free.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-203 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — FreeIIRFilterPtr
FreeIIRFilterPtr
int status = FreeIIRFilterPtr (IIRFilterPtr filterInformation);

Purpose
Frees the IIR cascade filter structure and all internal arrays.

Parameter
Input

Return Value

Name Type Description

filterInformation IIRFilterPtr Pointer to the filter structure that contains
the filter coefficients and the internal filter
information.

Refer to the AllocIIRFilterPtr
function description for more information
about the filter structure.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-204 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GaussNoise

 value

d about
lue.
GaussNoise
int status = GaussNoise (int n, double sDev, int seed, double noise[]);

Purpose
Generates an array of random Gaussian numbers distributed with expected zero mean
and the standard deviation you specify.

Parameters
Input

Output

Return Value

Using This Function
You specify the expected standard deviation of the pattern GaussNoise returns. The
expected mean value is zero; that is, the noise array values are expected to be centere
zero. When , GaussNoise generates a new random sequence using the seed va
When , the previously generated random sequence continues.

Example
/* The following code generates an array of random Gaussian

distributed numbers. */

double x[20], sDev;

int n;

n = 20;

sDev = 5.0;

GaussNoise (n, sDev, 17, x);

Name Type Description

n integer Number of samples.

sDev double-precision Standard deviation you specify.

seed integer Initial seed value.

Name Type Description

noise double-precision array Gaussian noise pattern.

Name Type Description

status integer Refer to Appendix A for error codes.

seed 0≥
seed 0<
© National Instruments Corporation 2-205 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenCosWin

,
GenCosWin
int status = GenCosWin (double x[], int n, double a[], int na);

Purpose
Applies a general cosine window to the input sequence x. If y represents the output sequence
GenCosWin obtains the elements of y using the following formula:

Parameters
Input

Output

Return Value

where a is the array of coefficients

na is the number of coefficients

n is the number of elements in x

Name Type Description

x double-precision array On input, x contains the input signal.

n integer Number of elements in the input array.

a double-precision array General cosine coefficient array.

na integer Number of elements in a.

Name Type Description

x double-precision array On output, x contains the signal after
GenCosWin applies the general cosine
window.

Name Type Description

status integer Refer to Appendix A for error codes.

yi xi 1–()k
ak

2πki
n

 cos

k 0=

na 1–

∑=
LabWindows/CVI Advanced Analysis Library 2-206 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenDeterminant

ite.

nal

quare
GenDeterminant
int status = GenDeterminant (void *A, int n, int matrixType, double *det);

Purpose
Calculates the determinant of the real, square input matrix A. In contrast to Determinant ,
GenDeterminant allows you to specify the type of matrix type with the matrixType
parameter. The input matrix can be upper or lower triangular, general, or positive defin

For upper or lower triangular matrices, the determinant equals the product of the diago
elements of the matrix. For a positive definite matrix, GenDeterminant first calculates the
Cholesky factorization of the input matrix and then calculates the determinant as the s
of the determinant of the upper triangular matrix R. Refer to the Cholesky function
description for more information.

Parameters
Input

Output

Return Value

Name Type Description

A double-precision
2D array

Input square matrix.

n integer Number of elements in one dimension of
the matrix.

matrixType integer Type of the matrix. Choose the matrix type
correctly because it significantly affects the
speed of computation.

Name Type Description

det double Determinant of the input matrix.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-207 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenDeterminant
Parameter Discussion
Table 2-30 shows valid matrix type values.

Table 2-30. Valid Matrix Type Values

Matrix Type Value

General matrix 0

Positive definite 1

Upper triangular 2

Lower triangular 3
LabWindows/CVI Advanced Analysis Library 2-208 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenEigenValueVector

ctors:

 if the

tion,
nd the
GenEigenValueVector
int status = GenEigenValueVector (void *A, int n, int outputChoice,

ComplexNum eigenValues[], void *eigenVectors);

Purpose
Calculates the eigenvalues and the corresponding eigenvectors x of a real, square input
matrix A. The following formula defines the eigenvalues and the corresponding eigenve

Although the input matrix is real, the eigenvalues and the eigenvectors can be complex
matrix is not symmetric.

The outputChoice parameter determines what to calculate. Depending on your applica
you can choose to calculate just the eigenvalues or to calculate both the eigenvalues a
eigenvectors.

The eigenValues output parameter is a 1D, complex array of n elements. The eigenVectors
output parameter is an n-by-n, complex matrix (2D array). Each ith column of this matrix is
the eigenvector that corresponds to the ith component of the eigenValues. Each eigenvector is
normalized so that its largest component equals one.

Parameters
Input

Output

Name Type Description

A double-precision
2D array

Input square matrix.

n integer Number of elements in one dimension of
the matrix.

outputChoice integer Pass 0 for eigenvalues only; 1 for both
eigenvalues and eigenvectors.

Name Type Description

eigenValues ComplexNum array Resulting eigenvalues of the input matrix.

eigenVectors ComplexNum 2D array Resulting eigenvectors of the input matrix.
You can pass NULL if outputChoice is 0.

λ

Ax λx=
© National Instruments Corporation 2-209 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenEigenValueVector
Return Value

Parameter Discussion
The following C typedef statement defines the ComplexNum structure:

typedef struct {

double real;

double imaginary;

} ComplexNum;

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-210 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenInvMatrix

trix,
ation
GenInvMatrix
int status = GenInvMatrix (void *A, int n, int matrixType, void *B);

Purpose
Calculates the inverse of the real, square input matrix A. If B denotes the inverse of the
matrixA:

 where I is the identity matrix

In contrast to InvMatrix , GenInvMatrix allows you to specify the type of the input matrix
with the matrixType parameter. The input matrix can be an upper or lower triangular ma
a general, square matrix, or a positive definite matrix. You can save significant comput
time if you properly specify the type of the matrix.

Parameters
Input

Output

Return Value

Name Type Description

A double-precision
2D array

Input square matrix.

n integer Number of elements in one dimension of
the matrix.

matrixType integer Type of the matrix. Choose the matrix type
correctly because it significantly affects the
speed of computation.

Name Type Description

B double-precision
2D array

Calculated inverse matrix.

Name Type Description

status integer Refer to Appendix A for error codes.

AB I=
© National Instruments Corporation 2-211 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenInvMatrix
Parameter Discussion
Table 2-31 shows valid matrix type values.

Table 2-31. Valid Matrix Type Values

Matrix Type Value

General matrix 0

Positive definite 1

Upper triangular 2

Lower triangular 3
LabWindows/CVI Advanced Analysis Library 2-212 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenLinEqs

ter

ot

tions
(2-2).

e an
GenLinEqs
int status = GenLinEqs (void *A, int n, int m, double y[], int matrixType,

double x[]);

Purpose
Solves for the unknown vector x in the linear system of equations:

(2-2)

The input matrix can be square or rectangular. The number of elements in y must equal the
number of rows in the matrix A.

GenLinEqs calculates the solution using the Singular Value Decomposition technique.

In the case of non-singular, square matrices, in which no row or column is a linear
combination of any other row or column, GenLinEqs solves for the unique solution x.

Two possibilities exist in the case of rectangular matrices. If the number of rows is grea
than the number of columns, the system has more equations than unknowns and is an
overdetermined system. Because the solution that satisfies the Equation (2-2) might n
exist, this procedure finds the least square solution x, which minimizes . If the number
of rows is less than the number of columns, the system has more unknowns than equa
and is an underdetermined system. It might have infinite solutions that satisfy Equation
This procedure calculates the minimum 2-norm solution.

If the input matrix is rank-deficient, GenLinEqs returns a warning.

The matrixType parameter specifies the type of the input matrix. The input matrix can b
upper or lower triangular matrix, a general matrix, or a positive definite matrix.

Parameters
Input

where A is the real input matrix

y is the known vector on the right side

Name Type Description

A double-precision
2D array

Input matrix. The matrix can be square or
rectangular.

n integer Number of rows in A.

m integer Number of columns in A.

Ax y=

A 2
© National Instruments Corporation 2-213 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenLinEqs
Output

Return Value

Parameter Discussion
Table 2-32 shows valid matrix type values.

y double-precision array Complex array that contains the set of
known vector coefficients.

matrixType integer Type of the input matrix. Choose the matrix
type correctly because it significantly
affects the speed of computation.

Name Type Description

x double-precision array Solution to the linear system of equations.

Name Type Description

status integer Refer to Appendix A for error codes. If the
input matrix is rank-deficient, GenLinEqs
returns the warning code 20001 .

Table 2-32. Valid Matrix Type Values

Matrix Type Value

General matrix 0

Positive definite 1

Upper triangular 2

Lower triangular 3

Name Type Description
LabWindows/CVI Advanced Analysis Library 2-214 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenLSFit
GenLSFit
int status = GenLSFit (void *H, int n, int k, double y[], double stdDev[],

int algorithm, double z[], double b[],
double covar[], double *mse);

Purpose
Finds the best fit k-dimensional plane and the set of linear coefficients using the least
chi-squares method for observation data sets:

Parameters
Input

where

Name Type Description

H double-precision
2D array

An n-by-k matrix that contains the
observation data for

, where n is the number
of rows in H, k is the number of columns
in H.

n integer Number of rows of H as well as the number
of elements in y.

k integer Number of columns of H as well as the
number of elements in b.

y double-precision array Number of elements in y should equal the
number of rows in H.

xi 0, xi 1, … xi k, 1– xi, , , ,()

i 0 1 … n 1–, , ,=

n the number of your observation data sets=

xi 0, xi 1, … xi k, 1–, , ,()
i 0 1 … n 1–, , ,=
© National Instruments Corporation 2-215 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenLSFit
Output

Return Value

stdDev double-precision array Standard deviation for data point (xi, yi).
If they are equal or if you do not know, pass
an empty array, and GenLSFit ignores this
parameter. The size of this array should
equal n.

algorithm integer Algorithm to use to solve the multiple linear
regression model. The algorithm has six
selections:
 0 = SVD
 1 = Givens
 2 = Givens2
 3 = Householder
 4 = LU decomposition
 5 = Cholesky algorithm

Name Type Description

z double-precision array Fitted data GenLSFit calculates by using
the coefficients b.

b double-precision array Set of coefficients that minimize , which
Equation (2-3) defines.

covar double-precision
2D array

Matrix of covariances with k-by-k
elements. cj, k is the covariance between bj
and bk, and cj, j is the variance of bj. If you
pass an empty array for covar, GenLSFit
does not calculate this matrix.

mse double-precision Mean squared error.

Name Type Description

status integer Refer to Appendix A for error codes.

Name Type Description

σ i

χ2
LabWindows/CVI Advanced Analysis Library 2-216 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenLSFit

ear

f

al

Using This Function
You can use GenLSFit to solve multiple linear regression problems and to solve for the lin
coefficients in a multiple-function equation.

The general least squares linear fit problem can be described as follows. Given a set o
observation data, find a set of coefficients that fit the linear model:

 for (2-3)

xi, j is your observation data, which H contains

You can write Equation (2-2) as .

The previous discussion leads to a multiple linear regression model, which uses sever
variables:

to predict one variable yi. In contrast, LinFit , ExpFit , and PolyFit are all based on a single
predictor variable, which uses one variable to predict another variable.

where b is the set of coefficients

n is the number of elements in y and the number of rows of H

k is the number of elements in b

yi b0xi 0, … bk 1– xi k 1–,+ +=

bj xi j,
j 0=

k 1–

∑= i 0 1 … n 1–, , ,=

H

x0 0, x0 1, … x0 k, 1–

x1 0, x1 1, x1 k, 1–

 :
.

xn 10– xn 12– xn 1 k,– 1–

=

Y HB=

xi 0, xi 1, … xi k 1–,, , ,
© National Instruments Corporation 2-217 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenLSFit
In most cases, we have more observation data than coefficients. The formulas in
Equation (2-3) might not produce the solution. The fit problem becomes to find the
coefficients B that minimize the difference between the observed data, yi, and the
predicted value:

GenLSFit uses the least chi-squares plane method to obtain the coefficients in
Equation (2-3), that is, finding the solution, B, which minimizes the following quantity:

(2-4)

where for for

In Equation (2-4), is the standard deviation, stdDev. If the measurement errors are
independent and normally distributed with constant standard deviation ,
Equation (2-4) is also the least squares estimation.

There are different ways to minimize . One way to minimize is to set the partial
derivatives of to zero with respect to :

zi bj xi j,
j 0=

k 1–

∑=

χ2 yi zi–

σ i

 2

i 0=

n 1–

∑
yi bj xi j,

i 0=

k 1–

∑–

σi

2

i 0=

n 1–

∑ H0B Y0– 2= = =

h0i j,

xi j,

σ i
------- y0i

,
yi

σ i
-----= = i 0 1 … n 1–, , ,= j 0 1 … k 1–, , ,=

σi
σ i σ=

χ2 χ2

χ2 b0 b1 … bk 1–, , ,

∂χ2

∂b0
-------- 0=

∂χ2

∂b1
-------- 0=

.

.

.

∂χ2

∂bk 1–
-------------- 0=

LabWindows/CVI Advanced Analysis Library 2-218 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenLSFit

ms.
 the

:

ivens.

nnot
d the

 of
The previous equations can be written as:

(2-5)

 is the transposition of H0.

Equations (2-5) and (2-4) are also called normal equations of the least squares proble
You can solve them using LU or Cholesky factorization algorithms, but the solution from
normal equations is susceptible to round-off error.

The preferred way to minimize is to find the least squares solution of the equations

You can use QR or Singular Value Decomposition factorization to find the solution, B. For
QR factorization, you can choose Householder, Givens, or Givens2, also called fast G

Different algorithms can give you different precision. In some cases, if one algorithm ca
solve the equation, perhaps another algorithm can. You can try different algorithms to fin
one best suited to your data.

GenLSFit calculates the covariance matrix covar as follows:

The best fitted curve z is given by the following formula:

GenLSFit obtains the mse using the following formula:

You can think of the polynomial fit that has a single predictor variable as a special case
multiple regression. If the observation data sets are (xi, yi) where , the
model for polynomial fit is as follows:

 where (2-6)

H0
T
H0B H0

T
Y=

H0
T

χ2

H0B Y0=

covar HT
0 H0()

1–
=

zi bj xi j,
j 0=

k 1–

∑=

mse
1
n

yi zi–

σi

 2

i 0=

n 1–

∑=

i 0 1 … n 1–, , ,=

yi bjxi
j b0 b1xi b2xi

2 … bk 1– xi
k 1–+ + + +=

j 0=

k i–

∑= i 0 1 2 … n 1–, , , ,=
© National Instruments Corporation 2-219 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenLSFit

se

n
Comparing Equations (2-3) and (2-6) shows that . In other words:

In this case, you can build H as follows:

Instead of using , you can choose another function formula to fit the data sets (xi, yi).
In general, you can select . Here, is the function model that you choo
to fit your observation data. In polynomial fit, .

In general, you can build H as follows:

Your fit model is:

The following two examples show how to use GenLSFit . The first example uses the
function to perform multiple regression analysis based entirely on tabulated observatio
data. The second solves for the linear coefficients in a multiple-function equation.

xij xi
j=

xi 0 xi
0 xi 1, xi xi 2, xi

2 … xi k, 1– xi
k 1–=, ,=,=,=

H

1 x0 x0
2 … x0

k 1–

1 x1 x1
2 x1

k 1–

:

.

1 xn 1– xn 1– xn 1–
k 1–

=

xi j, xi
j=
xi j, fj xi()= fj xi()

fj xi() xi
j=

H

f0 x0() f1 x0() f2 x0() … fk 1– x0()
f0 x1() f1 x1() f2 x1() fk 1– x1()

:

.

f0 xn 1–() f1 xn 1–() f2 xn 1–() fk 1– xn 1–()

=

yi b0 f0 x() b1 f1 x() … bk 1– fk 1– x()+ + +=
LabWindows/CVI Advanced Analysis Library 2-220 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenLSFit

 using

 the
Example: Predicting Cost
Suppose you want to estimate the total cost, in dollars, of a production of baked scones
the quantity produced, X1, and the price of one pound of flour, X2. To keep things simple, the
following five data points form the sample data table shown in Table 2-33.

You want to estimate the coefficients to the following formula:

The only parameters you must build are H (observation matrix) and y arrays. Each column of
H is the observed data for each independent variable: The first column is one because
coefficient b0 is not associated with any independent variable.

Fill in H as follows:

Table 2-33. Sample Data Table

Cost (dollars)
Y

Quantity
X1

Flour Price
X2

$150 295 $3.00

$75 100 $3.20

$120 200 $3.10

$300 700 $2.80

$50 60 $2.50

Y b0 b1X1 b2X2+ +=

H

1 295 3

1 100 3.20

1 200 3.10

1 700 280

1 60 250

=

© National Instruments Corporation 2-221 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenLSFit
The following code is based on this example.

/* example of predicting cost using GenLSFit */

int k, n, algorithm, status;

double H[5][3], y[5], z[5], b[3], X1[5], X2[5], mse;

double *stdDev=0, *covar=0; /* Define empty arrays; the function will

 ignore these parameters. */

n = 5;

k = 3;

/* Read in data for X1, X2, and y. */

.

.

.

/* Construct matrix H. */

for(i=0;i<n;i++) {

H[i][0] = 1; /* Fill in the first column of H. */

H[i][1] = X1[i]; /* Fill in the second column of H. */

H[i][2] = X2[i]; /* Fill in the third column of H. */

}

algorithm = 0; /* Use SVD algorithm. */

status = GenLSFit(H, n, k, y, stdDev, algorithm, z, b, covar, &mse);

Example: Linear Combinations
Suppose that you have samples from a transducer, y values, and you want to solve for the
coefficients of the model:

To build H, set each column to the independent functions evaluated at each x value. Assuming
there are 100 x values, H would be the following array:

y b0 b1 ωx() b2 ωx() b3x3+cos+sin+=

H

1 ωx0()sin ωx0()cos x0

1 ωx1()sin ωx1()cos x1
2

1 ωx2()sin ωx2()cos x2
2

:

.

1 ωx99()sin ωx99()cos x99
2

=

LabWindows/CVI Advanced Analysis Library 2-222 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenLSFit
The following code is based on this example.

/* example of linear combinations using GenLSFit */

int i, k, n, algorithm, status;

double H[100][4], y[100], z[100], b[4], x[100], mse, w;

double *stdDev=0, *covar=0; /* Define empty arrays, the function will

 ignore these parameters. */

n = 100;

k = 4;

w = 0.2;

/* Read in data for x and y. */

.

.

.

/* Construct matrix H. */

for(i=0;i<n;i++) {

H[i][0] = 1; /* Fill in the first column of H. */

H[i][1] = sin(w*x[i]);/* Fill in the second column of H. */

H[i][2] = cos(w*x[i]);/* Fill in the third column of H. */

H[i][3] = pow(x[i],3);/* Fill in the fourth column of H. */

}

algorithm = 0; /* Use SVD algorithm. */

status = GenLSFit(H, n, k, y, stdDev, algorithm, z, b, covar, &mse);
© National Instruments Corporation 2-223 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenLSFitCoef

ts the
ral

GenLSFitCoef
int status = GenLSFitCoef (void *H, int n, int k, double y[], double b[],

int algorithm);

Purpose
Finds the set of linear fit coefficients, which describe the linear curve that best represen
input data GenLSFitCoef uses to obtain the least squares solution technique. The gene
form of the k-dimension linear fit is as follows:

Compose the H matrix as follows:

GenLSFitCoef obtains the general LS linear fit coefficient bk by minimizing the quantity:

Parameters
Input

Let be your ith observation

 be observed x points

yi be observed y points

Name Type Description

H double-precision
2D array

Input matrix that represents the formula you
use to fit the data set (x, y). Hi, j are the
function values of xi.

n integer Number of rows of H, as well as the number
of elements in y.

k integer Number of columns of H, as well as the
number of elements in b.

i 0 1 … n, , ,=

xi j, … xi k, 1–, , k 1–

H

1 x0 1, x0 2, … x0 k, 1–

1 x1 1, x1 2, x1 k, 1–

:

.

1 xn 1 1,– xn 1 2,– xn 1– k 1–,

=

Q yi zi–()2 yi b0– bjxi j,
j 1=

k 1–

∑–

 2

i 0=

n 1–

∑=
i 0=

n 1–

∑=
LabWindows/CVI Advanced Analysis Library 2-224 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GenLSFitCoef
Output

Return Value

Parameter Discussion
The algorithm has the valid selection as shown in Table 2-34.

y double-precision array Array that contains the y-coordinates of the
(x, y) data sets to fit.

algorithm integer Algorithm to use to solve the multiple linear
regression model.

Name Type Description

b double-precision array Contains the set of linear coefficients that
best fit the multiple linear regression model
in a least squares sense. The size of this
array must be at least k.

Name Type Description

status integer Refer to Appendix A for error codes.

Table 2-34. Valid Algorithm Selections

Selection Description

0 Singular value decomposition (default)

1 Givens decomposition

2 Square root free Givens decomposition

3 Household transformation

4 LU decomposition

5 Cholesky decomposition

Name Type Description
© National Instruments Corporation 2-225 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — GenLSFitCoef
Each algorithm might offer different precision depending on the input data. Given the
coefficient vector b and H, GenLSFitCoef can calculate the fitted data zi by a simple matrix
multiplication:

and can calculate the mean squared error by:

Z H b×=

mse
1
n
--- zi yi–()2

i 0=

n 1–

∑=
LabWindows/CVI Advanced Analysis Library 2-226 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — GetAnalysisErrorString
GetAnalysisErrorString
char *message = GetAnalysisErrorString (int errorNum)

Purpose
Converts the error number an Analysis Library function returns into a meaningful
error message.

Parameter
Input

Return Value

Name Type Description

errorNum integer Status an Analysis Library function returns.

Name Type Description

message string Explanation of error.
© National Instruments Corporation 2-227 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — HamWin
HamWin
int status = HamWin (double x[], int n);

Purpose
Applies a Hamming window to the x input signal. The following formula defines the
Hamming window:

 for

HamWin obtains the output signal using the following formula:

 for

HamWin performs the window operation in place; that is, the windowed data x replaces the
input datax.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

Name Type Description

x double-precision array Windowed data.

Name Type Description

status integer Refer to Appendix A for error codes.

wi 0.54 0.46
2πi
n

 cos×–= i 0 1 … n 1–, , ,=

xi xi wi×= i 0 1 … n 1–, , ,=
LabWindows/CVI Advanced Analysis Library 2-228 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — HanWin
HanWin
int status = HanWin (double x [], int n);

Purpose
Applies a Hanning window to the x input signal. The following formula defines the
Hanning window:

 for

HanWin obtains the output signal using the following formula:

 for

HanWin performs the window operation in place; that is, the windowed data x replaces the
input datax.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

Name Type Description

x double-precision array Windowed data.

Name Type Description

status integer Refer to Appendix A for error codes.

wi 0.5 0.5
2πi
n

 cos–= i 0 1 … n 1–, , ,=

xi xi wi×= i 0 1 … n 1–, , ,=
© National Instruments Corporation 2-229 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — HarmonicAnalyzer

ent in

 of

t
HarmonicAnalyzer
int status = HarmonicAnalyzer (const double autoPowerSpectrum[],

int autoPowerSpectrumSize, int frameSize,
 int numberOfHarmonics, int windowType,
double samplingRate, int fundamental_Frequency,
double harmonicAmplitude[],
double harmonicFrequency[], int *percent_THD,
int *percentTHDNoise);

Purpose
Finds the amplitude and frequency of the fundamental and harmonic components pres
autoPowerSpectrum. HarmonicAnalyzer also calculates the percent of total harmonic
distortion and the total harmonic distortion plus noise.

If the sampling rate is 1,000 Hz and the fundamental frequency is 250 Hz, the number
harmonics is limited by . If you set
numberOfHarmonics equal to 4, HarmonicAnalyzer sets the third and the fourth elemen
of the harmonicAmplitude and harmonicFrequency array equal to 0.0.

Typically, you should pass the time-domain signal to ScaledWindow and then to
AutoPowerSpectrum . You then pass the output of AutoPowerSpectrum to
HarmonicAnalyzer .

Parameters
 Input

Name Type Description

autoPowerSpectrum double-precision array Single-sided auto power spectrum
of the windowed signal.

autoPowerSpectrumSize integer Number of elements in
autoPowerSpectrum.

frameSize integer Number of samples in the
time-domain signal array.

numberOfHarmonics integer Number of harmonic components.

windowType integer Window type the function applies
to the time-domain signal.

samplingRate double Input sampling rate in hertz.

fundamental_Frequency integer Estimate of the fundamental
frequency.

samplingRate 2 fundamental_Frequency×()⁄ 2=
LabWindows/CVI Advanced Analysis Library 2-230 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — HarmonicAnalyzer
Output

 Return Value

Name Type Description

harmonicAmplitude double-precision array Amplitudes of the fundamental
components and its harmonics.

harmonicFrequency double-precision array Frequencies of the fundamental
component and its harmonics.

percent_THD integer Percent total harmonic distortion
present in autoPowerSpectrum.

percentTHDNoise integer Percent total harmonic
distortion plus noise present
in autoPowerSpectrum.

Name Type Description

status integer Refer to Appendix A for error
codes.
© National Instruments Corporation 2-231 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Histogram

,

t
Histogram
int status = Histogram (double inputArray[], int numberOfElements,

double base, double top, int histogramArray[],
double axisArray[], int intervals);

Purpose
Calculates the histogram of the inputArray . If the input sequence is

the Histogram: h(X) of X for eight intervals is

Notice that the histogram of the input sequence X is a function of X.

The function obtains Histogram: h(X) as follows: Histogram scans the input sequence X to
determine the range of values in it. Then the function establishes the interval width,
according to the specified number of intervals,

Let represent the output sequence X because the histogram is a function of X. The function
evaluates elements of using

 for

Histogram defines the ith interval to be the range of values from up to bu
not including

 for

and defines the function yi(x) to be

where max is the maximum value found in the input sequence X

min is the minimum value found in the input sequence X

m is the specified number of intervals

X 0 1 3 3 4 4 4 5 5 8, , , , , , , , ,{ }=

h x() h0 h1 h2 h3 h4 h5 h6 h7, , , , , , ,{ } 1 1 0 2 3 2 0 1, , , , , , ,{ }= =

∆x

∆x
max min–

m
--------------------------=

χ
χ

χi min 0.5 ∆x i ∆x×+×+= i 0 1 2 … m 1–, , , ,=

∆i χi 0.5 ∆x×–
χi 0.5 ∆x×+

∆i χ[i 0.5 ∆x : χi 0.5 ∆x)×+×–= i 0 1 2 … m 1–, , , ,=

yi x() 1 if x union of ∆i∈
0 elsewhere

=

LabWindows/CVI Advanced Analysis Library 2-232 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Histogram

if

nput
Histogram has unity value if the value of x falls within the specified interval. Otherwise it is
zero. Notice that the interval is centered about , and its width is .

The last interval, , is defined as . In other words,
a value equals max, it is counted as belonging to the last interval.

Finally, Histogram evaluates the histogram sequence h using

 for

Histogram obtains the histogram by counting the number of times the elements in the i
array fall in the ith interval.

Parameters
Input

Output

Return Value

where hi represents the elements of the output sequence Histogram: h(X)

n is the number of elements in the input sequence X

Name Type Description

inputArray double-precision array Input array.

numberOfElements integer Number of elements in inputArray .

base double-precision Lower range.

top double-precision Upper range.

intervals integer Number of intervals.

Name Type Description

histogramArray integer array Histogram of inputArray .

axisArray double-precision array Histogram axis array; contains the
midpoint values of the intervals.

Name Type Description

status integer Refer to Appendix A for error codes.

∆ i χi ∆x

∆m 1– χm i– 0.5 ∆x : χm i– 0.5 ∆x×+×–[]

hi yi xj()
j 0=

n 1–

∑= i 0 1 2 … m 1–, , , ,=
© National Instruments Corporation 2-233 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — IIRCascadeFiltering

ilters,

g
IIRCascadeFiltering
int status = IIRCascadeFiltering (const double x[], int n,

IRFilterPtr filterInformation,
double y[]);

Purpose
Filters the input sequence using the cascade IIR filter specified by the filterInformation
structure. Each of the IIR cascaded stages is second order for lowpass and highpass f
and fourth order for bandpass and bandstop filters.

filterInformation is the pointer to the filter structure that contains the filter coefficients
and the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr and then call one of the cascade IIR design functions
Bw_CascadeCoef , Ch_CascadeCoef , Elp_CascadeCoef , InvCh_CascadeCoef ,
or Bessel_CascadeCoef before you call IIRCascadeFiltering .

The filterInformation structure contains the internal filter state information for the filterin
operation so you can call IIRCascadeFiltering in a loop to continually filter new input
array data and produce new output filtered data.

If you finish filtering one set of input data and want to filter a completely new data set,
call ResetIIRFilter before you call IIRCascadeFiltering with the new data.
ResetIIRFilter causes the internal filter state information to clear before the next
filtering operation.

Parameters
Input

Name Type Description

x const double-precision Array that contains the raw data to filter.

n integer Specifies the number of points in both the
input x and output y.

filterInformation IIRFilterPtr Pointer to the filter structure that contains
the filter coefficients and the internal filter
information.

Refer to the AllocIIRFilterPtr
function description for more information
about the filter structure.
LabWindows/CVI Advanced Analysis Library 2-234 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — IIRCascadeFiltering
Output

Return Value

Name Type Description

y double-precision array Array that contains the output of the
IIR filtering operation. The size of this
array must be at least n.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-235 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — IIRFiltering

 such
IIRFiltering
int status = IIRFiltering (double x[], int nx, double a[], double y1[],

int na, double b[], double x1[], int nb,
double y[]);

Purpose
Filters the input sequence using the IIR filter specified by reverse coefficients a and forward
coefficients b by:

The reverse and forward coefficients are obtained by respective IIR coefficient functions
as Bw_Coef .

Parameters
Input

Name Type Description

x double-precision array Raw data to filter.

nx integer Number of points in both the x coefficients
array and the x1 conditions array.

a double-precision array Array that contains the reverse coefficients
for the IIR filtering operation.

y1 double-precision array y1 contains the initial conditions, or states.
The size of this array must be at least

.

na integer Number of coefficients in both the a
coefficients array and the y1 conditions
array.

b double-precision array Array that contains the forward coefficients
for the IIR filtering operation.

x1 double-precision array x1 contains the initial conditions, or states.
The size of this array must be at least

.

nb integer Number of coefficients in both the b
coefficients array and the x conditions array.

yn
1
a0
----- bi xn i–

i 0=

nb 1–

∑ ai yn i–
i 1=

na 1–

∑–

=

na 1–

nb 1–
LabWindows/CVI Advanced Analysis Library 2-236 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — IIRFiltering
Output

Return Value

Name Type Description

y1 double-precision array on output, y1 contains the final conditions
for the next iterations.

x1 double-precision array on output, x1 contains the final conditions
for the next iterations.

y double-precision array y array that contains the output of the
IIR filtering operation. The size of this array
must be at least nx.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-237 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Impulse
Impulse
int status = Impulse (int n, double amp, int index, double x[]);

Purpose
Generates an array of numbers that has the pattern of an impulse waveform. Impulse obtains
the ith element of the output array using the following formula:

Parameters
Input

Output

Return Value

Example
/* The following code generates the impulse pattern

x = {0.0, 0.0, 1.5, 0.0, 0.0}. */

double x[5], amp;

int n, i;

n = 5;

i = 2;

amp = 1.5;

Impulse (n, amp, i, x);

Name Type Description

n integer Number of elements in x.

amp double-precision Amplitude.

index integer Impulse index.

Name Type Description

x double-precision array Impulse array.

Name Type Description

status integer Refer to Appendix A for error codes.

xi
amp if i index=

0 otherwise

=

LabWindows/CVI Advanced Analysis Library 2-238 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ImpulseResponse

and
verse

ImpulseResponse
int status = ImpulseResponse (double stimulus[], double response[], int n,

double impulse[]);

Purpose
Calculates the impulse response of a network based on time-domain signals stimulus
response. The impulse response is in the time domain. The impulse response is the in
Fourier transform of the transfer function:

Parameters
Input

Output

where Sxy(f) is the two-sided cross power spectrum of the stimulus (x) with the
response(y)

Sxx(f) is the two-sided auto power spectrum of the stimulus

Name Type Description

stimulus double-precision array Contains the time-domain signal, usually
the network stimulus.

response double-precision array Contains the time-domain signal, usually
the network response.

n integer Number of elements in the input array.
n must be a power of 2.

Name Type Description

impulse double-precision array Impulse that contains the impulse response
of the network based on time-domain
signals stimulus and response. The size of
this array must be at least n.

impulse ReInvFFT Sxy f()
Sxx f()

 =
© National Instruments Corporation 2-239 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ImpulseResponse
Return Value

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-240 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Integrate
Integrate
int status = Integrate (double x[], int n, double dt, double xInit,

double xFinal, double y[]);

Purpose
Calculates the discrete integral of the input array. Integrate obtains the ith element of the
resulting array using the following formula:

 where and

Integrate can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

dt double-precision Sampling interval.

xInit double-precision Initial condition.

xFinal double-precision Final condition.

Name Type Description

y double-precision array Integrated array.

Name Type Description

status integer Refer to Appendix A for error codes.

yi xj 1– 4xj xj 1++ +() dt
6
-----×

j 0=

i

∑= x 1– xInit= xn xFinal=
© National Instruments Corporation 2-241 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Integrate
Example
/* Generate an array with random numbers and integrate it. */

double x[200], y[200];

double dt, xInit, xFinal;

int n;

n = 200;

dt = 0.001;

xInit = -0.5;

xFinal = -0.25;

Uniform (n, 17, x);

Integrate (x, n, dt, xInit, xFinal, y);
LabWindows/CVI Advanced Analysis Library 2-242 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvCh_BPF
InvCh_BPF
int status = InvCh_BPF (double x[], int n, double fs, double fl, double fh,

double atten, int order, double y[]);

Purpose
Filters the input array using a digital bandpass inverse Chebyshev filter. InvCh_BPF can
perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

atten double-precision Stop band attenuation in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-243 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvCh_BPF
Example
/* Generate a random signal and filter it using a fifth-order bandpass

inverse Chebyshev filter. The pass band is from 200.0 to 300.0. */

double x[256], y[256], fs, fl, fh, atten;

int n, order;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

InvCh_BPF (x, n, fs, fl, fh, atten, order, y);
LabWindows/CVI Advanced Analysis Library 2-244 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvCh_BSF
InvCh_BSF
int status = InvCh_BSF (double x[], int n, double fs, double fl, double fh,

double atten, int order, double y[]);

Purpose
Filters the input array using a digital bandstop inverse Chebyshev filter. InvCh_BSF can
perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

atten double-precision Stop band attenuation in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-245 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvCh_BSF
Example
/* Generate a random signal and filter it using a fifth-order bandstop

inverse Chebyshev filter. The stop band is from 200.0 to 300.0. */

double x[256], y[256], fs, fl, fh, atten;

int n, order;

n = 256;

fs = 1000.0;

fl = 200.0;

fh = 300.0;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

InvCh_BSF (x, n, fs, fl, fh, atten, order, y);
LabWindows/CVI Advanced Analysis Library 2-246 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvCh_CascadeCoef

d by

nd

re

ling
e

InvCh_CascadeCoef
int status = InvCh_CascadeCoef (double fs, double fl, double fh,

double atten, IIRFilterPtr filterInformation);

Purpose
Generates the set of cascade form filter coefficients to implement an IIR filter as specifie
the inverse Chebyshev filter model.

filterInformation is the pointer to the filter structure that contains the filter coefficients a
the internal filter information. You must allocate this structure by calling
AllocIIRFilterPtr before you call this cascade IIR filter design function.

To redesign another filter, you should first call FreeIIRFilterPtr to free the present filter
structure and then call AllocIIRFilterPtr with the new type and order parameters befo
you call InvCh_CascadeCoef .

If the type and order remain the same, you can call this IIR design function without cal
FreeIIRFilterPtr and AllocIIRFilterPtr . In this case, you should properly reset th
filtering operation for that structure by calling ResetIIRFilter before the first call to
IIRCascadeFiltering .

 Parameters
Input

Name Type Description

fs double-precision Specifies the sampling frequency in hertz.

fl double-precision Specifies the desired lower cutoff frequency
of the filter in hertz.

fh double-precision Specifies the desired upper cutoff frequency
of the filter in hertz

atten double-precision Specifies the stop band attenuation, in
decibels, of the IIR filter to design.
© National Instruments Corporation 2-247 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvCh_CascadeCoef
Output

Return Value

Example
/* Design a cascade lowpass inverse Chebyshev IIR filter. */

double fs, fl, fh, atten, x[256], y[256];

int type, order, n;

IIRFilterPtr filterInfo;

n = 256;

fs = 1000.0;

fl = 200.0;

atten = 60.0;

order = 5;

type = 0; /* lowpass */

Uniform(n,17,x);

filterInfo = AllocIIRFilterPtr(type, order);

if(filterInfo!=0) {

InvCh_CascadeCoef(fs, fl, fh, atten, filterInfo);

IIRCascadeFiltering(x, n, filterInfo, y);

FreeIIRFilterPtr(filterInfo);

}

Name Type Description

filterInformation IIRFilterPtr Pointer to the filter structure that contains
the filter coefficients and the internal filter
information.

Refer to the AllocIIRFilterPtr
function description for more information
about the filter structure.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-248 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvCh_Coef

rse
InvCh_Coef
int status = InvCh_Coef (int type, int order, double fs, double fl,

double fh, double atten, double a[], int na,
double b[], int nb);

Purpose
Generates the set of filter coefficients to implement an IIR filter as specified by the inve
Chebyshev filter model. type has the valid values shown in Table 2-35.

a and b are the reverse and forward filter coefficients. Use IIRFiltering to achieve the
actual filtering:

Parameters
Input

Table 2-35. Valid type Values

Value Description

0 lowpass filter; fh is not used

1 highpass filter; fh is not used

2 bandpass filter

3 bandstop filter

Name Type Description

type integer Controls the filter type of the inverse
Chebyshev IIR filter coefficients.

order integer Order of the IIR filter.

fs double-precision Sampling frequency in hertz.

fl double-precision Desired lower cutoff frequency of the filter
in hertz.

fh double-precision Desired lower cutoff frequency of the filter
in hertz.

yn
1
a0
----- bi xn i– ai yn i–

i 1=

na 1–

∑–
i 0=

nb 1–

∑

=

© National Instruments Corporation 2-249 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvCh_Coef
Output

Return Value

atten double-precision Stop band attenuation, in decibels, of the
IIR filter to design.

na integer Number of coefficients in the a coefficient
array.

nb integer Number of coefficients in the b coefficient
array.

Name Type Description

a double-precision array Array that contains the reverse coefficients
of the designed IIR filter.

b double-precision array Array that contains the forward coefficients
of the designed IIR filter.

Name Type Description

status integer Refer to Appendix A for error codes.

Name Type Description
LabWindows/CVI Advanced Analysis Library 2-250 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvCh_HPF
InvCh_HPF
int status = InvCh_HPF (double x[], int n, double fs, double fc,

double atten, int order, double y[]);

Purpose
Filters the input array using a digital highpass inverse Chebyshev filter. InvCh_HPF can
perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

atten double-precision Stop band attenuation in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-251 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvCh_HPF
Example
/* Generate a random signal and filter it using a fifth-order highpass

inverse Chebyshev filter. */

double x[256], y[256], fs, fc, atten;

int n, order;

n = 256;

fs = 1000.0;

fc = 200.0;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

InvCh_HPF (x, n, fs, fc, atten, order, y);
LabWindows/CVI Advanced Analysis Library 2-252 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvCh_LPF
InvCh_LPF
int status = InvCh_LPF (double x[], int n, double fs, double fc, double atten,

int order, double y[]);

Purpose
Filters the input array using a digital lowpass inverse Chebyshev filter. InvCh_LPF can
perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

atten double-precision Stop band attenuation in decibels.

order integer Filter order.

Name Type Description

y double-precision array Filtered data.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-253 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvCh_LPF
Example
/* Generate a random signal and filter it using a fifth-order lowpass

inverse Chebyshev filter. */

double x[256], y[256], fs, fc, atten;

int n, order;

n = 256;

fs = 1000.0;

fc = 200.0;

atten = 40.0;

order = 5;

Uniform (n, 17, x);

InvCh_LPF (x, n, fs, fc, atten, order, y);
LabWindows/CVI Advanced Analysis Library 2-254 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvF_Dist
InvF_Dist

int status = InvF_Dist (double p, int n, int m, double *f);

Purpose
Calculates f, given a probability , such that:

where F is a random variable from an F-distribution with n and m degrees of freedom

Parameters
Input

Output

Note When , .

Return Value

Name Type Description

p double-precision Probability .

n integer Degrees of freedom.

m integer Degrees of freedom.

Name Type Description

f double-precision The unique number f such that
, where F is a random

variable from an F-distribution with n and
m degrees of freedom.

Name Type Description

status integer Refer to Appendix A for error codes.

0 p 1<≤()

prob F f<() p=

0 p 1<≤()

prob F f<() p=

p 0= f 0=
© National Instruments Corporation 2-255 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvF_Dist
Example
double p, f;

int n, m;

p = 0.635;

n = 2;

m = 4;

InvF_Dist (p, n, m, &f);
LabWindows/CVI Advanced Analysis Library 2-256 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvFFT

the
InvFFT
int status = InvFFT (double x[], double y[], int n);

Purpose
Calculates the inverse Fast Fourier Transform of the complex data. Let be
complex array:

InvFFT performs the operation in place and overwrites the input arrays x and y.

Parameters
Input

Output

Note n must be a power of two.

Return Value

Name Type Description

x double-precision array Real part of complex array.

y double-precision array Imaginary part of complex array.

n integer Number of elements.

Name Type Description

x double-precision array Real part of inverse FFT.

y double-precision array Imaginary part of inverse FFT.

Name Type Description

status integer Refer to Appendix A for error codes.

X x jy+=

Y FFT 1– X()=
© National Instruments Corporation 2-257 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvFFT
Example
/* Generate two arrays with random numbers and calculate the inverse

Fast Fourier Transform. */

double x[256], y[256];

int n;

n = 256;

Uniform (n, 17, x);

Uniform (n, 17, y);

InvFFT (x, y, n);
LabWindows/CVI Advanced Analysis Library 2-258 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvFHT
InvFHT
int status = InvFHT (double x[], int n);

Purpose
Calculates the inverse Fast Hartley Transform using the following formula:

InvFHT performs the operation in place and overwrites the x input array.

Parameters
Input

Output

Note n must be a power of two.

Return Value

where xi is the i th point of the inverse FHT

Name Type Description

x double-precision array Array to transform.

n integer Number of elements.

Name Type Description

x double-precision array Inverse Fast Hartley Transform.

Name Type Description

status integer Refer to Appendix A for error codes.

xi
1
n
--- Xk cas

2πik
n

k 0=

n 1–

∑=

cas x() x()cos x()sin+=
© National Instruments Corporation 2-259 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvFHT
Example
/* Generate an array with random numbers and calculate its inverse

Fast Hartley Transform. */

double x[256];

int n;

n = 256;

Uniform (n, 17, x);

InvFHT (x, n);
LabWindows/CVI Advanced Analysis Library 2-260 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvMatrix

;
InvMatrix
int status = InvMatrix (void *x, int n, void *y);

Purpose
Finds the inverse matrix of an input matrix. InvMatrix can perform the operation in place
that is, x and y can be the same matrices.

Parameters

Input

Output

Note The input matrix must be an n-by-n square matrix.

Return Value

Name Type Description

x double-precision
2D array

Input matrix.

n integer Dimension size of matrix.

Name Type Description

y double-precision
2D array

Inverse matrix.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-261 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvN_Dist
InvN_Dist
int status = InvN_Dist (double p, double *x);

Purpose
Calculates x, given a probability , such that:

 where X is a random variable from a standard normal distribution

Parameters
Input

Output

Return Value

Example
double p, x;

p = 0.5;

InvN_Dist (p, &x);

Name Type Description

p double-precision Probability .

Name Type Description

x double-precision The unique number x such that
, where X is a random

variable from a standard normal
distribution.

Name Type Description

status integer Refer to Appendix A for error codes.

0 p 1< <()

prob X x<() p=

0 p 1< <()

prob X x<() p=
LabWindows/CVI Advanced Analysis Library 2-262 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — InvT_Dist
InvT_Dist

int status = InvT_Dist (double p, int n, double *t);

Purpose
Calculates t, given a probability , such that:

where T is a random variable from a T-distribution with n degrees of freedom

Parameters
Input

Output

Return Value

Example
double p, t;

int n;

p = 0.635;

n = 2;

InvT_Dist (p, n, &t);

Name Type Description

p double-precision Probability .

n integer Degrees of freedom.

Name Type Description

t double-precision The unique number t such that
, where T is a random

variable from a T-distribution with
n degrees of freedom.

Name Type Description

status integer Refer to Appendix A for error codes.

0 p 1< <()

prob T t<() p=

0 p 1< <()

prob T t<() p=
© National Instruments Corporation 2-263 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — InvXX_Dist
InvXX_Dist
int status = InvXX_Dist (double p, int n, double *x);

Purpose
Calculates x, given a probability , such that:

where is a random variable from a chi-square distribution with n degrees of freedom

Parameters
Input

Output

Note When , .

Return Value

Example
double p, x;

int n;

p = 0.635;

n = 2;

InvXX_Dist (p, n, &x);

Name Type Description

p double-precision Probability .

n integer Degrees of freedom.

Name Type Description

x double-precision The unique number x such that
, where is a random

variable from a chi-square distribution with
n degrees of freedom.

Name Type Description

status integer Refer to Appendix A for error codes.

0 p 1<≤()

prob χ x<() p=

χ

0 p 1<≤()

prob χ x<() p= χ

p 0= x 0=
LabWindows/CVI Advanced Analysis Library 2-264 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ksr_BPF
Ksr_BPF
int status = Ksr_BPF (double fs, double fl, double fh, int n, double coef[],

double beta);

Purpose
Designs a digital bandpass FIR linear phase filter using a Kaiser window. Ksr_BPF generates
only the filter coefficients; it does not actually perform data filtering.

Parameters
Input

Output

Return Value

Name Type Description

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

n integer Number of filter coefficients.

beta double-precision Shape parameter.

Name Type Description

coef double-precision array Filter coefficients.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-265 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ksr_BPF

.

Parameter Discussion
The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Table 2-36 lists some beta values and their equivalent windows.

Refer to Discrete-Time Signal Processing by Oppenheim and Schafer for more information

Example
/* Design a 55-point bandpass FIR linear phase filter using a Kaiser

window with beta = 4.5. Filter the incoming signal with the designed

filter. */

double x[256], coef[55], y[310], fs, fl, fh, beta;

int n, m;

fs = 1000.0; /* sampling frequency */

fl = 200.0; /* desired lower cutoff frequency */

fh = 300.0; /* desired higher cutoff frequency */

/* pass band is from 200.0 to 300.0 */

n = 55; /* filter length */

beta = 3;

m = 256;

Ksr_BPF (fs, fl, fh, n, coef, beta);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */

Table 2-36. beta Values and Equivalent Windows

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman
LabWindows/CVI Advanced Analysis Library 2-266 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ksr_BSF
Ksr_BSF
int status = Ksr_BSF (double fs, double fl, double fh, int n, double coef[],

double beta);

Purpose
Designs a digital bandstop FIR linear phase filter using a Kaiser window. Ksr_BSF generates
only the filter coefficients; it does not actually perform data filtering.

Parameters
Input

Output

Return Value

Name Type Description

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

n integer Number of filter coefficients.

beta double-precision Shape parameter.

Name Type Description

coef double-precision array Filter coefficients.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-267 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ksr_BSF

.

Parameter Discussion
The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Table 2-37 lists some beta values and their equivalent windows.

Refer to Discrete-Time Signal Processing by Oppenheim and Schafer for more information

Example
/* Design a 55-point bandstop FIR linear phase filter using a Kaiser

window with beta = 4.5. Filter the incoming signal with the designed

filter. */

double x[256], coef[55], y[310], fs, fl, fh, beta;

int n, m;

fs = 1000.0; /* sampling frequency */

fl = 200.0; /* desired lower cutoff frequency */

fh = 300.0; /* desired higher cutoff frequency */

/* stop band is from 200.0 to 300.0 */

n = 55; /* filter length */

beta = 3;

m = 256;

Ksr_BSF (fs, fl, fh, n, coef, beta);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */

Table 2-37. beta Values and Equivalent Windows

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman
LabWindows/CVI Advanced Analysis Library 2-268 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ksr_HPF
Ksr_HPF
int status = Ksr_HPF (double fs, double fc, int n, double coef[],

double beta);

Purpose
Designs a digital highpass FIR linear phase filter using a Kaiser window. Ksr_HPF generates
only the filter coefficients; it does not actually perform data filtering.

Parameters
Input

Output

Return Value

Name Type Description

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

n integer Number of filter coefficients.

beta double-precision Shape parameter.

Name Type Description

coef double-precision array Filter coefficients.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-269 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ksr_HPF

.

Parameter Discussion
The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Table 2-38 lists some beta values and their equivalent windows.

Refer to Discrete-Time Signal Processing by Oppenheim and Schafer for more information

Example
/* Design a 55-point highpass FIR linear phase filter using a Kaiser

window with beta = 4.5. Filter the incoming signal with the designed

filter. */

double x[256], coef[55], y[310], fs, fc, beta;

int n, m;

fs = 1000.0; /* sampling frequency */

fc = 200.0; /* desired cutoff frequency */

n = 55; /* filter length */

beta = 4.5;

m = 256;

Ksr_HPF (fs, fc, n, coef, beta);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */

Table 2-38. beta Values and Equivalent Windows

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman
LabWindows/CVI Advanced Analysis Library 2-270 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ksr_LPF
Ksr_LPF
int status = Ksr_LPF (double fs, double fc, int n, double coef[],

double beta);

Purpose
Designs a digital lowpass FIR linear phase filter using a Kaiser window. Ksr_LPF generates
only the filter coefficients; it does not actually perform data filtering.

Parameters
Input

Output

Return Value

Name Type Description

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

n integer Number of filter coefficients.

beta double-precision Shape parameter.

Name Type Description

coef double-precision array Filter coefficients.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-271 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ksr_LPF

.

Parameter Discussion
The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Table 2-39 lists some beta values and their equivalent windows.

Refer to Discrete-Time Signal Processing by Oppenheim and Schafer for more information

Example
/* Design a 55-point lowpass FIR linear phase filter using a Kaiser

window with beta = 4.5. Filter the incoming signal with the designed

filter. */

double x[256], coef[55], y[310], fs, fc, beta;

int n, m;

fs = 1000.0; /* sampling frequency */

fc = 200.0; /* desired cutoff frequency */

n = 55; /* filter length */

beta = 4.5;

m = 256;

Ksr_LPF (fs, fc, n, coef, beta);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */

Table 2-39. beta Values and Equivalent Windows

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman
LabWindows/CVI Advanced Analysis Library 2-272 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — KsrWin
KsrWin
int status = KsrWin (double x[], int n, double beta);

Purpose
Applies a Kaiser window to the x input signal. The following formula defines the
Kaiser window:

 for

KsrWin obtains the output signal using the formula:

 for

KsrWin performs the window operation in place; that is, the windowed data x replaces the
input datax.

Parameters
Input

Output

Return Value

where

Io represents the zeroth-order modified Bessel function of the first kind

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

beta double-precision Shape parameter.

Name Type Description

x double-precision array Windowed data.

Name Type Description

status integer Refer to Appendix A for error codes.

wi
Io beta 1.0 a2–()

1 2⁄
×()

Io beta()
---= i 0 1 … n 1–, , ,=

a 1 2i
n
-----–=

xi xi wi×= i 0 1 … n 1–, , ,=
© National Instruments Corporation 2-273 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — KsrWin

.

Parameter Discussion
The beta parameter controls the shape of a Kaiser window. A larger beta value results in a
narrower Kaiser window. Table 2-40 lists some beta values and their equivalent windows.

Refer to Discrete-Time Signal Processing by Oppenheim and Schafer for more information

Table 2-40. beta Values and Equivalent Windows

beta Window

0.00 Rectangular

1.33 Triangle

3.86 Hanning

4.86 Hamming

7.04 Blackman
LabWindows/CVI Advanced Analysis Library 2-274 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — LinEqs
LinEqs
int status = LinEqs (void *A, double y[], int n, double x[]);

Purpose
Solves the linear system of equations:

Parameters
Input

Output

Note The A input matrix must be an n-by-n square matrix.

Return Value

Example
/* Find the solution to the linear system of equations. */

double A[10][10], y[10], x[10];

int n;

n = 10;

.

.

.

LinEqs (A, y, n, x);

Name Type Description

A double-precision
2D array

Input matrix.

y double-precision array Known vector.

n integer Dimension size of system.

Name Type Description

x double-precision array Solution of vector.

Name Type Description

status integer Refer to Appendix A for error codes.

Ax y=
© National Instruments Corporation 2-275 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — LinEv1D
LinEv1D
int status = LinEv1D (double x[], int n, double a, double b, double y[]);

Purpose
Performs a linear evaluation of a 1D array, x. LinEv1D obtains the i th element of the output
array, y, using the formula:

LinEv1D can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements.

a double-precision Multiplicative constant.

b double-precision Additive constant.

Name Type Description

y double-precision array Linearly evaluated array.

Name Type Description

status integer Refer to Appendix A for error codes.

yi a xi b+×=
LabWindows/CVI Advanced Analysis Library 2-276 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — LinEv2D
LinEv2D
int status = LinEv2D (void *x, int n, int m, double a, double b, void *y);

Purpose
Performs a linear evaluation of a 2D array, x. LinEv2D obtains the (i, j)th element of the output
array, y, using the formula:

LinEv2D can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision
2D array

Input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

a double-precision Multiplicative constant.

b double-precision Additive constant.

Name Type Description

y double-precision
2D array

Linearly evaluated array.

Name Type Description

status integer Refer to Appendix A for error codes.

yi j, a xi j, b+×=
© National Instruments Corporation 2-277 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — LinFit
LinFit
int status = LinFit (double x[], double y[], int n, double z[],

double *slope, double *intercept, double *mse);

Purpose
Finds the slope and intercept values that best represent the linear fit of the data points (x, y)
using the least squares method. LinFit obtains the ith element of the output array, z, using
the following formula:

LinFit obtains the mean squared error (mse) using the following formula:

 where n is the number of sample points

Parameters
Input

Output

Name Type Description

x double-precision array x values.

y double-precision array y values.

n integer Number of sample points.

Name Type Description

z double-precision array Best fit array.

slope double-precision Slope of line.

intercept double-precision y-intercept.

mse double-precision Mean squared error.

zi slope xi intercept+×=

mse

zi yi– 2

i 0=

n 1–

∑
n

----------------------------=
LabWindows/CVI Advanced Analysis Library 2-278 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — LinFit
Return Value

Example
/* Generate a ramp pattern and find the best linear fit. */

double x[200], y[200], z[200];

double start, end, a, b, slope, intercept, mse;

int n;

n = 200;

start = 0.0;

end = 1.99E2;

Ramp (n, start, end, x); /* x[i] = i */

a = 3.5;

b = -2.75;

LinEv1D (x, n, a, b, y); /* y[i] = a*x[i] + b */

/* Find the best linear fit in z. */

LinFit (x, y, n, z, &slope, &intercept, &mse);

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-279 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — LU

e

LU
int status = LU (void *A, int n, int p[], int *sign);

Purpose
Performs an LU matrix decomposition:

Parameters
Input

Output

Note L and U output matrices overwrite the input matrix.

Return Value

where L is an n-by-n lower triangular matrix with main diagonal elements all equal to on

U is an upper triangular matrix

Name Type Description

A double-precision
2D array

Input matrix.

n integer Dimension size.

Name Type Description

A double-precision
2D array

LU decomposition.

p integer array Permutation vector.

sign integer Row exchange indicator.

Name Type Description

status integer Refer to Appendix A for error codes.

A LU=
LabWindows/CVI Advanced Analysis Library 2-280 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — LU

anges.
Parameter Discussion
After LU executes, LU replaces the input matrix A with two triangular matrices. L occupies
the lower triangular part of A, and U occupies the upper triangular part of A. The permutation
vector p records possible row exchange information in the LU decomposition.
indicates that there is no such exchange or that there is an even number of such exch

 indicates that there is an odd number of such exchanges. p and sign are useful
when solving the linear equations or computing the determinant. Use LU in conjunction with
BackSub and ForwSub to solve a set of linear equations with the same matrix A.

Refer to Numerical Recipes in C: The Art of Scientific Computing by Press, et al., for more
information.

sign 0=

sign 1=
© National Instruments Corporation 2-281 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — MatrixMul
MatrixMul
int status = MatrixMul (void *X, void *Y, int n, int k, int m, void *Z);

Purpose
Multiplies two 2D input matrices, X and Y. MatrixMul obtains the (i, j)th element of the
output matrix, Z, using the formula:

Parameters
Input

Output

Return Value

Name Type Description

X double-precision
2D array

X input matrix.

Y double-precision
2D array

Y input matrix.

n integer First dimension of X.

k integer Second dimension of X; first dimension
of Y.

m integer Second dimension of Y.

Name Type Description

Z double-precision
2D array

Output matrix.

Name Type Description

status integer Refer to Appendix A for error codes.

Zi j, xi p, yp j,×
p 0=

k 1–

∑=
LabWindows/CVI Advanced Analysis Library 2-282 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — MatrixMul
Parameter Discussion
Confirm that the array sizes are correct. You must meet the following array sizes:

• X must be n by k.

• Y must be k by m.

• Z must be n by m.

Example
/* Multiply two matrices. Note: A x B - B x A, in general. */

double x[10][20], y[20][15], z[10][15];

int n, k, m;

n = 10;

k = 20;

m = 15;

MatrixMul (x, y, n, k, m, z);
© National Instruments Corporation 2-283 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — MatrixNorm

r.
n the
MatrixNorm
int status = MatrixNorm (void *A, int n, int m, int normType, double *norm);

Purpose
Calculates the norm of a real input matrix A. The input matrix can be square or rectangula
The norm of a matrix is a scalar that gives some measure of the size of the elements i
matrix. It is similar to the concept of magnitude or absolute value for scalar numbers.

There are different ways to calculate the norm of a matrix. The normType parameter
indicates which type of norm to use to calculate the norm.

Parameters
Input

Output

Return Value

Name Type Description

A double-precision
2D array

Input matrix.

n integer Number of rows in A.

m integer Number of columns in A.

normType integer Type of norm to calculate. Refer to the
following Parameter Discussion section.

Name Type Description

norm double-precision Calculated norm of the input matrix.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-284 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — MatrixNorm
Parameter Discussion
The normType parameter indicates what type of norm to use to calculate the condition
number. Table 2-41 shows valid norm type values.

Table 2-41. Valid Norm Type Values

Norm Type Value Meaning

2-norm 0 Largest singular value of A.

1-norm 1 Largest column sum of A.

Frobenius-norm 2 Square root of the sum of the diagonal elements of ATA,
where AT is the complex conjugate transpose of A.

Infinite-norm 3 Largest row sum of A.
© National Instruments Corporation 2-285 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — MatrixRank

ar.

e
 rows
nk

lar

MatrixRank
int status = MatrixRank (void *A, int n, int m, double tolerance, int *rank);

Purpose
Calculates the rank of the real input matrix A. The input matrix can be square or rectangul

The maximum number of linearly independent rows or columns of the matrix defines th
rank of a matrix. The rank is always less than or equal to the minimum of the number of
and columns of the matrix. If the rank equals this minimum value, the matrix is a full-ra
matrix. Otherwise, it is a rank-deficient matrix.

The rank of a matrix can be calculated in a number of ways. MatrixRank first calculates the
singular values of the input matrix and then calculates the rank as the number of singu
values of the input matrix that are larger than the input tolerance.

You must specify the input tolerance as a positive number close to machine precision.
If the matrix in your application is a full-rank matrix, any small value of tolerance gives the
samerank . If the matrix in your application is a rank-deficient matrix, different values of
tolerance can result in different values of rank .

Parameters
Input

Output

Name Type Description

A double-precision
2D array

Input matrix.

n integer Number of rows in A.

m integer Number of columns in A.

tolerance double-precision Tolerance value. Refer to the following
Parameter Discussion section.

Name Type Description

rank integer Rank of the input matrix.
LabWindows/CVI Advanced Analysis Library 2-286 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — MatrixRank

Return Value

Parameter Discussion
Matrix rank is the number of singular values in the input matrix that are larger than the
tolerance. Set tolerance close to eps, which is the smallest possible double-precision,
floating-point number.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-287 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — MaxMin1D

of the
MaxMin1D
int status = MaxMin1D (double x[], int n, double *max, int *imax, double *min,

int *imin);

Purpose
Finds the maximum and minimum values in the input array and the respective indices
first occurrence of the maximum and minimum values.

Parameters
Input

Output

Return Value

Example
/* Generate an array with random and find the maximum and minimum

values. */

double x[20], y[20];

double max, min;

int n, imax, imin;

n = 20;

Uniform (n, 17, x);

MaxMin1D (x, n, &max, &imax, &min, &imin);

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

max double-precision Maximum value.

imax integer Index of max in x array.

min double-precision Minimum value.

imin integer Index of min in x array.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-288 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — MaxMin2D

dices
MaxMin2D
int status = MaxMin2D (void *X, int n, int m, double *max, int *imax,

int *jmax, double *min, int *imin, int *jmin);

Purpose
Finds the maximum and the minimum values in the 2D input array and the respective in
of the first occurrence of the maximum and minimum values. MaxMin2D scans the X array
by rows.

Parameters
Input

Output

Return Value

Name Type Description

X double-precision
2D array

Input array.

n integer Number of elements in first dimension ofX.

m integer Number of elements in second dimension
of X.

Name Type Description

max double-precision Maximum value.

imax integer Index of max in X array (first dimension).

jmax integer Index of max in X array (second
dimension).

min double-precision Minimum value.

imin integer Index of min in X array (first dimension).

jmin integer Index of min in X array (second
dimension).

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-289 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — MaxMin2D
Example
/* This example finds the maximum and minimum values as well as their

location within the array. */

double x[5][10], max, min;

int n, m, imax, jmax, imin, jmin;

n = 5;

m = 10;

MaxMin2D (x, n, m, &max, &imax, &jmax, &min, &imin, &jmin);
LabWindows/CVI Advanced Analysis Library 2-290 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Mean

Mean
int status = Mean (double x[], int n, double *meanval);

Purpose
Calculates the mean, or average, value of the input array. Mean calculates the mean using the
following formula:

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

Name Type Description

meanval double-precision Mean value.

Name Type Description

status integer Refer to Appendix A for error codes.

meanval

xi
i 0=

n 1–

∑
n

-------------=
© National Instruments Corporation 2-291 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Median
Median
int status = Median (double x[], int n, double *medianval);

Purpose
Finds the median value of the x input array. To find the median value, Median first sorts the
input array in ascending order. Let S be the sorted array:

Note The x input array does not change.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

Name Type Description

medianval double-precision Median value.

Name Type Description

status integer Refer to Appendix A for error codes.

medianval
S

n
2

 if n is odd

0.5 S
n
2
--- 1–

 S
n
2

 +
 × if n is even

=

LabWindows/CVI Advanced Analysis Library 2-292 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Mode

urs
Mode
int status = Mode (double x[], int n, double xBase, double xTop,

int intervals, double *modeval);

Purpose
Finds the mode of the x input array. The mode is defined as the value that most often occ
in a given set of samples. Mode determines the mode in terms of the histogram of the
input array.

Parameters
Input

Output

Return Value

Example
/* Generate a Gaussian distributed random array and find its mode. */

double x[2000], max, min, modeval;

int n, intervals, imax, imin;

n = 2000;

intervals = 50;

GaussNoise (n, 1.0E0, 17, x);

MaxMin1D (x, n, &max, &imax, &min, &imin);

Mode (x, n, min, max, intervals, &modeval);

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

xBase double-precision Lower range.

xTop double-precision Upper range.

intervals integer Number of intervals.

Name Type Description

modeval double-precision Mode value.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-293 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Moment
Moment
int status = Moment (double x[], int n, int order, double *momentval);

Purpose
Calculates the moment about the mean of the input array with the specified order.
Moment uses the following formulas to find the moment:

 where

Parameters
Input

Output

Note order must be greater than zero.

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

order integer Moment order.

Name Type Description

momentval double-precision Moment about the mean.

Name Type Description

status integer Refer to Appendix A for error codes.

momentval
xi ave–()order

n

i 0=

n 1–

∑= ave

xi
i 0=

n 1–

∑
n

-------------=
LabWindows/CVI Advanced Analysis Library 2-294 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Moment
Example
/* Generate an array with random numbers and determine its skewness

(third-order moment) and its kurtosis (fourth-order moment). */

double x[200], skew, kurtosis;

int n, order;

n = 200;

Uniform (n, 17, x);

order = 3;

Moment (x, n, order, &skew);

order = 4;

Moment (x, n, order, &kurtosis);
© National Instruments Corporation 2-295 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Mul1D
Mul1D
int status = Mul1D (double x[], double y[], int n, double z[]);

Purpose
Multiplies two 1D arrays. Mul1D obtains the ith element of the output array using the
following formula:

Mul1D can perform the operation in place; that is, z can be the same array as either x or y.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array x input array.

y double-precision array y input array.

n integer Number of elements to multiply.

Name Type Description

z double-precision array Result array.

Name Type Description

status integer Refer to Appendix A for error codes.

zi xi yi×=
LabWindows/CVI Advanced Analysis Library 2-296 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Mul2D
Mul2D
int status = Mul2D (void *X, void *Y, int n, int m, void *Z);

Purpose
Multiplies two 2D arrays, X and Y. Mul2D obtains the (i, j)th element of the output array, Z,
using the following formula:

Mul2D can perform the operation in place; that is, Z can be the same array as either X or Y.

Parameters
Input

Output

Return Value

Name Type Description

X double-precision
2D array

X input array.

Y double-precision
2D array

Y input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

Z double-precision
2D array

Result array.

Name Type Description

status integer Refer to Appendix A for error codes.

zi j, xi j, yi j,+=
© National Instruments Corporation 2-297 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — N_Dist

N_Dist
int status = N_Dist (double x, double *p);

Purpose
Calculates the one-sided probability p:

 where X is a random variable from a standard normal distribution

Parameters
Input

Output

Return Value

Note For computing the two-sided probability , you can use the
formula .

Example
double x, p;

x = -123.456;

N_Dist (x, &p);

Name Type Description

x double-precision –∞ < x < ∞.

Name Type Description

p double-precision Probability .

Name Type Description

status integer Refer to Appendix A for error codes.

p prob X x≤()=

0 p 1< <()

p2 prob x– X x≤ ≤()=
p2 1.0 2 probX x–≤()×–=
LabWindows/CVI Advanced Analysis Library 2-298 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Neg1D
Neg1D
int status = Neg1D (double x[], int n, double y[]);

Purpose
Negates the elements of the input array. Neg1D can perform the operation in place; that is,
x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

y double-precision array Negated values of the x input array.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-299 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — NetworkFunctions

ross
pulse

lus.
onse.

ciated
se.
NetworkFunctions
int status = NetworkFunctions (void *STIMULUS, void *RESPONSE, int n,

int numFrames, double dt, double MAGSXY[],
double PHASESXY[], double MAGHF[],
double PHASEHF[], double COHERENCE[],
double IMPULSE[], double *df);

Purpose
Calculates the single-sided coherence function along with the averaged single-sided c
power spectrum, averaged single-sided frequency response, or transfer function, and im
response from a 2D array of stimulus signals and a 2D array of response signals.

NetworkFunctions calculates the network functions as follows:

STIMULUS is a 2D array that contains a time-domain signal, usually the network stimu
RESPONSE is a 2D array that contains a time-domain signal, usually the network resp

Each row in the stimulus array represents one frame of the network stimulus and is asso
with one row of the response array, which represents one frame of the network respon

where Sxy(f) is the two-sided cross power spectrum of x and y

Sxx(f) is the two-sided auto power spectrum of x

Syy(f) is the two-sided auto power spectrum of y

x is the stimulus signal

y is the response signal

avg cross power averageSxy f()()=

avg transfer function averageSxy f()()
averageSxx f()()
---=

average impulse response ReInvFFT avg two-sided transfer function()=

coherence average Sxy f() 2

average Sxx f() average Syy f()×
---=
LabWindows/CVI Advanced Analysis Library 2-300 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — NetworkFunctions

t

Parameters
Input

Output

Name Type Description

STIMULUS double-precision
2D array

Contains the time-domain signal, usually
the network stimulus. The number of rows
should equal numFrames, and the number
of columns should equal n. The size of this
array must be at least .

RESPONSE double-precision
2D array

Contains the time-domain signal, usually
the network stimulus. The number of rows
should equal numFrames, and the number
of columns should equal n. The size of this
array must be at least .

n integer Number of elements in one frame of the
input stimulus and response arrays.

numFrames integer Number of frames, or rows, the input
stimulus and response arrays contain.

dt double-precision Sampling period of the time-domain signal,
usually in seconds. , where fs is
the sampling frequency of the time-domain
signal.

Name Type Description

MAGSXY double-precision array Averaged single-sided cross power
spectrum between the stimulus and
response, in volts rms square if the input
signals are in volts. If the input signals are
not in volts, the results are in input signal
units rms square. This array must be at leas

 elements long.

PHASESXY double-precision array Averaged single-sided phase spectrum in
radians showing the difference between the
phases of the response signal and the
stimulus signal. This array must be at least

 elements long.

numFrames n×

numFrames n×

dt 1 fs⁄=

n 2⁄

n 2⁄
© National Instruments Corporation 2-301 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — NetworkFunctions

t

Return Value

MAGHF double-precision array Magnitude of the averaged single-sided
transfer function between the stimulus and
response signals. This array must be at leas

 elements long.

PHASEHF double-precision array Phase, in radians of the averaged
single-sided transfer function between the
stimulus and response signals.

COHERENCE double-precision array Averaged single-sided coherence function
spectrum. The coherence function shows
the frequency content of the response as a
result of the stimulus and measures the
validity of the network frequency response
measurement. This array must be at least

 elements long.

IMPULSE double-precision array Contains the impulse response of the
network based on time-domain signals
stimulus and response.
NetworkFunctions calculates the
impulse from the averaged frequency
response of the stimulus and response
signals. The size of this array must be at
least n.

df double-precision Points to the frequency interval, in hertz, if
dt is in seconds.

Name Type Description

status integer Refer to Appendix A for error codes.

Name Type Description

n 2⁄

n 2⁄

df 1 n dt×()⁄=
LabWindows/CVI Advanced Analysis Library 2-302 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — NonLinearFit

ents

ut

a:
NonLinearFit
int status = NonLinearFit (double x[], double y[], double z[], int n,

ModelFun *modelFunction, double a[], int ncoef,
double *mse);

Purpose
Uses the Levenberg-Marquardt algorithm to determine the least squares set of coeffici
that best fit the set of input data points (x, y) as expressed by a nonlinear function
where a is the set of coefficients. NonLinearFit also gives the best fit curve .

You must pass a pointer to the nonlinear function f(x, a) along with a set of initial guess
coefficients a. NonLinearFit does not always give the correct answer. The correct outp
sometimes depends on the initial choice of a. It is very important to verify the final result.

NonLinearFit calculates the output mse (mean squared error) using the following formul

Parameters
Input

Name Type Description

x double-precision array Array of x-coordinates of the (x, y) data sets
to fit.

y double-precision array Array of y-coordinates of the (x, y) data
sets to fit.

n integer Number of elements in both the x and y
arrays.

modelFunction ModelFun Pointer to the model function, f(xi, a), used
in the nonlinear fitting algorithm. The
model function must be defined as follows:
double ModelFunct
(double x, double a[],

int ncoef);

where a contains the function coefficients.

y f x a,()=
y f x a,()=

mse

yi f x a,()–()2

i 0=

n 1–

∑
n

--=
© National Instruments Corporation 2-303 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — NonLinearFit
Output

Return Value

a double-precision array On input, a gives a set of initial guess
coefficients.

ncoef integer Number of coefficients (size of a).

Name Type Description

z double-precision array Best fit array, .

a double-precision array Best fit coefficients.

mse double-precision Mean squared error between y and z.

Name Type Description

status integer Refer to Appendix A for error codes.

Name Type Description

y f x a,()=
LabWindows/CVI Advanced Analysis Library 2-304 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — NonLinearFitWithMaxIters

ents

ut

d
NonLinearFitWithMaxIters
int status = NonLinearFitWithMaxIters (double x[], double y[], double z[],

int n, int maximumIterations,
ModelFun *modelFunction, double a[], int ncoef,
double *mse);

Purpose
Uses the Levenberg-Marquardt algorithm to determine the least squares set of coeffici
that best fit the set of input data points (x, y) as expressed by a nonlinear function
where a is the set of coefficients. NonLinearFitWithMaxIters also gives the best fit curve

.

You must pass a pointer to the nonlinear function f(x, a) along with a set of initial guess
coefficients a. NonLinearFit does not always give the correct answer. The correct outp
sometimes depends on the initial choice of a. It is very important to verify the final result.

NonLinearFitWithMaxIters calculates the output mse (mean squared error) using the
following formula:

Note If NonLinearFitWithMaxIters reaches the maximum number of iterations
without reaching a solution, it returns an error. The outputs z, a, and mse contain
the best filtered array, best fit coefficients, and the mean square error at the en
of maximum iterations.

Parameters
Input

Name Type Description

x double-precision array Array of x-coordinates of the (x, y) data
sets to fit.

y double-precision array Array of y-coordinates of the (x, y) data
sets to fit.

n integer Number of elements in both the x and
y arrays.

y f x a,()=

y f x a,()=

mse

yi f x a,()–()2

i 0=

n 1–

∑
n

--=
© National Instruments Corporation 2-305 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — NonLinearFitWithMaxIters
Output

Return Value

maximumIterations integer Maximum number of iterations
allowed.

modelFunction ModelFun pointer Pointer to the model function, f(xi, a),
used in the nonlinear fitting algorithm.
The model function must be defined as
follows:
double ModelFunct
(double x, double a[],

int ncoef);

where a contains the function
coefficients.

a double-precision array On input, a gives a set of initial guess
coefficients.

ncoef integer Number of coefficients (size of a).

Name Type Description

z double-precision array Best fit array, .

a double-precision array Best fit coefficients.

mse double-precision Mean squared error between y and z.

Name Type Description

status integer Refer to Appendix A for error codes.

Name Type Description

y f x a,()=
LabWindows/CVI Advanced Analysis Library 2-306 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Normal1D
Normal1D
int status = Normal1D (double x[], int n, double y[], double *ave,

double *sDev);

Purpose
Normalizes a 1D input vector. The output vector has the following form:

where ave and sDev are the mean and the standard deviation of the input vector

Refer to the StdDev function description for the formulas Normal1D uses to find the mean
and the standard deviation.

Normal1D can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input vector.

n integer Number of elements.

Name Type Description

y double-precision array Normalized vector.

ave double-precision Mean value of x.

sDev double-precision Standard deviation of x.

Name Type Description

status integer Refer to Appendix A for error codes.

yi

xi ave–

sDev
-------------------=
© National Instruments Corporation 2-307 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Normal1D
Example
/* Generate a vector (1D array) with random samples and normalize

it. */

double x[200], y[200], ave, sDev;

int n;

n = 200;

Uniform (n, 17, x);

Normal1D (x, n, y, &ave, &sDev);
LabWindows/CVI Advanced Analysis Library 2-308 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Normal2D
Normal2D
int status = Normal2D (void *X, int n, int m, void *Y, double *ave,

double *sDev);

Purpose
Normalizes a 2D input matrix. The output matrix has the following form:

where ave and sDev are the mean and the standard deviation of the input matrix

Refer to the StdDev function description for the formulas Normal2D uses to find the mean
and the standard deviation.

Normal2D can perform the operation in place; that is, X and Y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

X double-precision
2D array

Input matrix.

n integer Size of first dimension.

m integer Size of second dimension.

Name Type Description

Y double-precision
2D array

Normalized matrix.

ave double-precision Mean value of X.

sDev double-precision Standard deviation of X.

Name Type Description

status integer Refer to Appendix A for error codes.

yi j,
xi j, ave–

sDev
----------------------=
© National Instruments Corporation 2-309 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Normal2D
Example
/* Normalize a matrix (2D array). */

double x[10][20], y[10][20], ave, sDev;

int n, m;

n = 10;

m = 20;

.

.

.

Normal2D (x, n, m, y, &ave, &sDev);
LabWindows/CVI Advanced Analysis Library 2-310 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — NumericIntegration

le, or

e,
that

w

ule
NumericIntegration
int status = NumericIntegration (double x[], int n, double dt, int method,

double *ir);

Purpose
Performs numeric integration on the data the input array x contains using one of the following
four numeric integration methods: Trapezoidal Rule, Simpson’s Rule, Simpson’s 3/8 Ru
Bode Rule. You normally obtain the data to integrate by sampling some function f(t) at
multiples of dt. Your samples are f(0), f(dt), f(2dt), and so on. dt is the sampling step size.

Applying Multiple Methods when Number of Points Is Insufficient
If you do not provide a sufficient number of points for the integration method you choos
NumericIntegration applies the method you choose to all points it can. For the points
remain, NumericIntegration uses the next possible lower-order method.

For example, if you choose Bode Rule as the integration method, Table 2-42 shows ho
NumericIntegration evaluates the integral for different numbers of data points. If you
provide 224 points and choose the Bode Rule method, NumericIntegration arrives at the
result by performing 55 Bode Rule method partial evaluations and one Simpson’s 3/8 R
method evaluation.

Table 2-42. Bode Rule Example

Number of Points Partial Evaluations Performed

224 55 Bode, 1 Simpson’s 3/8

225 56 Bode

226 56 Bode, Trapezoidal

227 56 Bode, 1 Simpson’s

228 57 Bode, 1 Simpson’s 3/8
© National Instruments Corporation 2-311 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — NumericIntegration

r

r of
e sum

Formulas for Integration Methods
For , where n is the number of data points, k is an integer
dependent on the method, and x is the input array, Table 2-43 shows the basic formulas fo
each of the four integration methods.

Each method depends on the sampling interval, dt, and calculates the integral by using
successive applications of the basic formula to perform partial evaluations. The numbe
points each partial evaluation uses represents the order of the method. The result is th
of these successive partial evaluations.

Parameters
Input

Output

Table 2-43. Formulas for Integration Methods

Integration Method Formula

Trapezoidal Rule for

Simpson’s Rule for

Simpson’s 3/8 Rule for

Bode Rule
 for

Name Type Description

x double-precision array Array that contains data to integrate.

n integer Number of elements in x.

dt integer Interval size, which represents the sampling
step size to use to obtain the data.

method integer Integration method.

Name Type Description

ir double Result of the numeric integration.

i 0 1 2 … int n 1–() k⁄(), , , ,=

dt 2⁄() xi xi 1++()× k 1=

dt 3⁄() x2i 4x2i 1+ x2i 2++ +()× k 2=

dt 8⁄() 3x3i 9x3i 1+ 9x3i 2+ 3x3i 3++ + +()× k 3=

dt 45⁄() 14x4i 64x4i 1+ 24x4i 2+ 64x4i 3+ 14x4i 4++ + + +()×
k 4=
LabWindows/CVI Advanced Analysis Library 2-312 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — NumericIntegration
Return Value

Parameter Discussion
Table 2-44 shows valid method parameter values.

Name Type Description

status integer Refer to Appendix A for error codes.

Table 2-44. Valid Integration Method Values

Integration Method Value

Trapezoidal Rule 0

Simpson’s Rule 1

Simpson’s 3/8 Rule 2

Bode Rule 3
© National Instruments Corporation 2-313 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — OuterProduct
OuterProduct
int status = OuterProduct (double x[], int nx, double y[], int ny,

void *outerProduct);

Purpose
Calculates the outer product of the real input vectors x and y.

Let xi represent the elements of the nx-element vector x for .

Let yj represent the elements of the ny-element vector y for .

The outer product of these two vectors is a matrix O of dimensions n-by-m, where the (i, j)th
element of O is given by:

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input real vector x.

nx integer Number of elements in x.

y double-precision array Input real vector y.

ny integer Number of elements in y.

Name Type Description

outerProduct double-precision
2D array

Calculated outer product matrix.

Name Type Description

status integer Refer to Appendix A for error codes.

i 0 1 2 … nx 1–, , , ,=

j 0 1 2 … ny 1–, , , ,=

oi j, xi yj×=
LabWindows/CVI Advanced Analysis Library 2-314 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — PeakDetector

rray

you

ups
e for
hift
PeakDetector
int status = PeakDetector (double x[], int n, double threshold,

int width, int polarity, int initialize,
int endOfData, int *count, double **locations,
double **amplitudes, double **secondDerivatives);

Purpose
Finds the location, amplitude, and second derivatives of peaks or valleys in the input ax.

The input data might be a single array or consecutive blocks of data, which are useful
when the application involves large data arrays or real-time processing. The initialize and
endOfData parameters help you work with consecutive blocks of data. For example, if
have three blocks of data, you can perform peak detection on them according to the
following pseudocode:

 for i = 1 to 3
Acquire data
if (i == 1)

Initialize = True
else

Initialize = False
if (i == 3)

EndOfData = True
else

EndOfData = False
Set width, threshold, choice
Call PeakDectector function
Copy the calculated locations, amplitudes and second derivatives
to different variables so they won’t be overwritten during the next
iteration of the loop.

continue

PeakDetector is based on an algorithm that fits a quadratic polynomial to sequential gro
of data points. The width value specifies the number of data points to use. The best choic
the value of width is 3. Larger widths can reduce the apparent amplitude of peaks and s
the apparent locations.

For each peak or valley, PeakDetector tests the quadratic fit against the threshold level.
PeakDetector ignores peaks with heights lower than the threshold or valleys with troughs
higher than the threshold.

You must use the initialize and endOfData parameters to notify PeakDetector when you
pass the first and last blocks as the x parameter so that PeakDetector can initialize and
release data internal to the peak detection algorithm.
© National Instruments Corporation 2-315 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PeakDetector

Parameters
Input

Output

Name Type Description

x double-precision array Input array.

n integer Number of elements in input array x.

threshold double Threshold value to use to reject peaks
and valleys that are too small.

width integer Span, which specifies the number of
consecutive data points to use in the
quadratic least squares fit.

polarity integer Pass 0 to detect peaks; pass 1 to
detect valleys.

initialize integer Pass a nonzero value if the current input
array is the first data block (or the only
data block) to process; otherwise, pass 0.

endOfData integer Pass a nonzero value if the current input
array is the last data block (or the only
data block) to process; otherwise, pass 0.

Name Type Description

count integer Contains the number of peaks or valleys
found in the current block of data.
This is the size of the three output arrays:
locations, amplitudes, and
secondDerivatives.

locations double-precision
pointer

Dynamically allocated array that
contains the locations of the peaks or
valleys PeakDetector finds in the
current block of data.
LabWindows/CVI Advanced Analysis Library 2-316 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — PeakDetector

e
Return Value

Parameter Discussion
The threshold parameter eliminates the effect of noise in the input data. PeakDetector
ignores any peak with a fitted amplitude that is less than threshold and any valley with a fitted
amplitude that is greater than threshold.

The width parameter value should not exceed approximately half of the half-width of th
peaks or valleys. It can be much smaller for noise-free data.

The elements of the generated locations array represent indices from the beginning of
processing, the most recent call to PeakDetector with a nonzero initialize value.

When you no longer need the locations, amplitudes, or secondDerivatives arrays, free them
using FreeAnalysisMem .

amplitudes double-precision
pointer

Dynamically allocated array that
contains the amplitudes of the peaks
or valleys PeakDetector finds in the
current block of data.

secondDerivatives double-precision
pointer

Dynamically allocated array that
contains the second derivatives of the
peaks or valleys PeakDetector finds in
the current block of data.

Name Type Description

status integer Refer to Appendix A for error codes.

Name Type Description
© National Instruments Corporation 2-317 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PolyEv1D

nus
PolyEv1D
int status = PolyEv1D (double x[], int n, double coef[], int k, double y[]);

Purpose
Performs a polynomial evaluation on the input array. PolyEv1D obtains the ith element of the
output array using the following formula:

PolyEv1D can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Parameter Discussion
The order of the polynomial equals the number of elements in the coefficients array mi
one; that is, if there are k elements in the coef array, then .

Name Type Description

x double-precision array Input array.

n integer Number of elements.

coef double-precision array Coefficients array.

k integer Number of coefficients.

Name Type Description

y double-precision array Polynomially evaluated array.

Name Type Description

status integer Refer to Appendix A for error codes.

yi coefj xi
j×

j 0=

k 1–

∑=

order k 1–=
LabWindows/CVI Advanced Analysis Library 2-318 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — PolyEv1D
Example
/* Generate an array with random numbers, let the Ramp function

generate the coefficients { 1, 2, 3, 4, 5} and find the polynomial

evaluation of the array. */

double x[20], y[20], a[5];

double first, last;

int n, k;

n = 20;

k = 5;

first = 1.0;

last = 5.0;

Uniform (n, 17, x);

Ramp (k, first, last, a);

PolyEv1D (x, n, a, k, y);
© National Instruments Corporation 2-319 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PolyEv2D

nus
PolyEv2D
int status = PolyEv2D (void *X, int n, int m, double coef[], int k, void *Y);

Purpose
Performs a polynomial evaluation on a 2D input array. PolyEv2D obtains the (i, j)th element
of the output array using the following formula:

PolyEv2D can perform the operation in place; that is, X and Y can be the same array.

Parameters
Input

Output

Return Value

Parameter Discussion
The order of the polynomial equals the number of elements in the coefficients array mi
one; that is, if there are k elements in the coef array, then .

Name Type Description

X double-precision
2D array

Input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

coef double-precision array Coefficients array.

k integer Number of coefficients.

Name Type Description

Y double-precision
2D array

Polynomially evaluated array.

Name Type Description

status integer Refer to Appendix A for error codes.

yi j, coefp xi j,
p×

p 0=

k 1–

∑=

order k 1–=
LabWindows/CVI Advanced Analysis Library 2-320 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — PolyEv2D
Example
/* Perform a polynomial evaluation of a 2D array, let the Ramp function

generate the coefficients {1, 2, 3, 4, 5} and find the polynomial

evaluation of the array. */

double x[5][10], y[5][10], a[5];

double first, last;

int n, m, k;

n = 5;

k = 5;

m = 10;

first = 1.0;

last = 5.0;

Ramp (k, first, last, a);

PolyEv2D (x, n, m, a, k, y);
© National Instruments Corporation 2-321 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PolyFit

m

e.

s in
PolyFit
int status = PolyFit (double x[], double y[], int n, int order, double z[],

double coef[], double *mse);

Purpose
Finds the coefficients that best represent the polynomial fit of the data points (x, y) using the
least squares method. PolyFit obtains the ith element of the output array using the
following formula:

PolyFit obtains the mean squared error (mse) using the following formula:

where order is the polynomial order, and n is the number of sample points

If the elements in x are large and order is also large, you might see unstable results.
One solution is to scale the input data elements to the range [–1: 1]. To do this, perfor
the following steps:

1. Find the number, for example, k, in x that has the largest magnitude, or absolute valu

2. Divide all elements in the array by the absolute value of k.

3. Apply Polyfit and rescale the results in the output array by multiplying all element
the output array by the absolute value of k.

Parameters
Input

Name Type Description

x double-precision array x values.

y double-precision array y values.

n integer Number of sample points.

order integer Polynomial order.

zi coefnxi
n

n 0=

order

∑=

mse

zi yi– 2

i 0=

n 1–

∑
n

----------------------------=
LabWindows/CVI Advanced Analysis Library 2-322 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — PolyFit
Output

Note The size of the coefficients array must be .

Return Value

Example
/* Generate a 10th-order polynomial pattern with random coefficients

and find the polynomial fit. */

double x[200], y[200], z[200], a[11], coef[11];

double first, last, mse;

int n, k, order;

n = 200;

first = 0.0;

last = 1.99E2;

Ramp (n, first, last, x) /* x[i] = i */

k = 11;

Uniform (k, 17, a);

PolyEv1D (x, n, a, k, y);/* polynomial pattern */

/* Find the best polynomial fit. */

order = 10;

PolyFit (x, y, n, order, z, coef, &mse);

Name Type Description

z double-precision array Best fit.

coef double-precision array Polynomial coefficients.

mse double-precision Mean squared error.

Name Type Description

status integer Refer to Appendix A for error codes.

order 1+
© National Instruments Corporation 2-323 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PolyInterp

PolyInterp
int status = PolyInterp (double x[], double y[], int n, double x_val,

double *Interp_Val, double *Error);

Purpose
Calculates the value of the unique polynomial P of degree passing through the n points
(xi, f(xi)) at x_val, along with an estimate of the error in the interpolation, given a set of
n points (xi, f(xi)) in the plane where f is some function and given a value x_val at which f is
to be interpolated or extrapolated.

Parameters
Input

Output

Return Value

Using This Function
All input arrays should be the same size. If the value of x_val is in the range of x,
PolyInterp performs interpolation; otherwise, it performs extrapolation. If x_val is too far
from the range of x, Error might be large, and PolyInterp would not produce a satisfactory
extrapolation.

Name Type Description

x double-precision array Values at which the function to be
interpolated is known.

y double-precision array Function values f(x) at the known x values.

n integer Number of points in x and in y.

x_val double-precision Value at which f is to be interpolated or
extrapolated.

Name Type Description

Interp_Val double-precision Interpolated or extrapolated value at x_val.

Error double-precision Estimate of the error in the interpolation.

Name Type Description

status integer Refer to Appendix A for error codes.

n 1–
LabWindows/CVI Advanced Analysis Library 2-324 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — PolyInterp
Example
/* Pick points randomly, pick an x in the range of X-values, run a

polynomial through the points, and interpolate at x_val. */

double X[10], Y[10], Interp_Val, Error, x_val, high, low;

int n, i;

n = 10;

WhiteNoise (n, 5.0, 17, X);

WhiteNoise (n, 5.0, 17, Y);

high = X[0];

low = X[0];

for(i=0; i<n; i++) {

if (X[i] > high) high = X[i];

if (X[i] < low) low = X[i];

}

x_val = (high + low)/2.0;

PolyInterp (x, y, n, x_val, &Interp_Val, &Error);
© National Instruments Corporation 2-325 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PowerFrequencyEstimate

rum.

g
PowerFrequencyEstimate
int status = PowerFrequencyEstimate (double autoSpectrum[], int n,

double searchFreq, WindowStruct windowConstants,
double df, int span, double *freqPeak,
double *powerPeak);

Purpose
Calculates the estimated power and frequency around a peak in the power spectrum
of a time-domain signal. With PowerFrequencyEstimate , you can achieve good
frequency estimates for measured peaks that lie between frequency lines on the spect
PowerFrequencyEstimate also makes corrections for the window function you use.

PowerFrequencyEstimate calculates the estimated frequency peak using the followin
formula:

PowerFrequencyEstimate calculates the estimated power peak as follows:

where i = index of the searchFreq

df is the frequency interval, usually in hertz, as output by the AutoPowerSpectrum
function

enbw is the equivalent noise bandwidth member of the structure windowConstants
as output by the ScaledWindow function

freqPeak

autoSpectrumj j df×
j

i span–
2

--------------------=

i span+
2

∑

autoSpectrumj
j

i span–
2

--------------------=

i span+
2

∑

---=

powerPeak

autoSpectrumj
j

i span–
2

--------------------=

i span+
2

∑

enbw
--=
LabWindows/CVI Advanced Analysis Library 2-326 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — PowerFrequencyEstimate

Parameters
Input

Name Type Description

autoSpectrum double-precision array Single-sided power spectrum as output
by AutoPowerSpectrum .

n integer Number of elements in the input
autoSpectrum array.

searchFreq double-precision Frequency, usually in hertz, of the
frequency around which you want to
estimate the frequency and power.
If searchFreq is less than zero
or is not a valid frequency,
PowerFrequencyEstimate
automatically searches for the
maximum peak in the autoSpectrum
array and estimates the frequency and
power around the maximum peak.

windowConstants WindowStruct Structure that contains the following
useful constants for the selected window:

enbw is the equivalent noise bandwidth
of the selected window. You can use
this value to calculate the power in a
given frequency span.

coherentgain is the peak gain of
the window, relative to the peak
gain of the Rectangular window.
PowerFrequencyEstimate uses
this value to normalize peak signal
gains to that of the Rectangular
window.ScaledWindow creates the
windowConstants structure.
© National Instruments Corporation 2-327 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PowerFrequencyEstimate
Output

Return Value

df double-precision Frequency interval, in hertz, as output by
AmpPhaseSpectrum ,
AutoPowerSpectrum ,
CrossPowerSpectrum ,
NetworkFunctions , or
TransferFunction .

span integer Number of frequency lines, or bins,
around the peak to include in the
peak frequency and power estimation.
The estimation includes the power in

 frequency lines before the peak
frequency line, the peak frequency line
itself, and frequency lines after
the peak.

Name Type Description

freqPeak double-precision Points to the estimated frequency of the
estimated peak power in autospectrum.

powerPeak double-precision Points to the estimated peak power in
autospectrum.

Name Type Description

status integer Refer to Appendix A for error codes.

Name Type Description

span 2⁄

span 2⁄
LabWindows/CVI Advanced Analysis Library 2-328 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Prod1D
Prod1D
int status = Prod1D (double x[], int n, double *prod);

Purpose
Finds the product of the n elements of the input array. Prod1D obtains the product of the
elements using the following formula:

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

prod double-precision Product of elements.

Name Type Description

status integer Refer to Appendix A for error codes.

prod xi
i 0=

n 1–

∏=
© National Instruments Corporation 2-329 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PseudoInverse

to

ly,
g the

is

it
PseudoInverse
int status = PseudoInverse (void *A, int n, int m, double tolerance, void *B);

Purpose
Calculates the generalized inverse of the real input matrix A. The input matrix can be square
or rectangular. The dimensions of the input matrix A are n-by-m. The dimensions of the
output matrix (inverse) B are m-by-n.

Note In the case of rectangular matrices with (number of rows less than
number of columns), take the transpose of the input matrix before you pass it
PseudoInverse . The actual pseudoinverse is then the transpose of the result
matrix PseudoInverse calculates.

PseudoInverse uses the Singular Value Decomposition (SVD) technique. Define the
pseudoinverse of a scalar s to be if s does not equal zero, and zero otherwise. Similar
define the pseudoinverse of a diagonal matrix by transposing the matrix and then takin
scalar pseudoinverse of each entry. If denotes the pseudoinverse of a matrix A whose
singular value decomposition is given by:

then:

where is the pseudoinverse of the diagonal matrix S that contains the singular values of A

The pseudoinverse exists for both square and rectangular matrices. If the input matrix
square and nonsingular, the pseudoinverse is the same as the general matrix inverse.

Note Do not use PseudoInverse to calculate the inverse of a square matrix because
takes more time. Use GenInvMatrix instead.

The tolerance parameter must be a small positive number close to machine precision.
PseudoInverse sets all singular values of the input matrix smaller than tolerance equal
to zero.

n m<

1 s⁄

A†

A USV
T=

A† US†V
T=

S†
LabWindows/CVI Advanced Analysis Library 2-330 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — PseudoInverse
Parameters
Input

Output

Return Value

Parameter Discussion
The value of tolerance determines the level of accuracy in your final solution. Set tolerance
close to eps, which is the smallest possible double-precision, floating-point number.

Name Type Description

A double-precision
2D array

Input real matrix.

n integer Number of rows in A.

m integer Number of columns in A.

tolerance double-precision Tolerance value. Refer to the following
Parameter Discussion section.

Name Type Description

B double-precision
2D array

Calculated pseudoinverse matrix.
It is m-by-n.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-331 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Pulse
Pulse
int status = Pulse (int n, double amp[], int delay, int width,

double pulsePattern[]);

Purpose
Generates an array of numbers that represents the pattern of a pulse waveform. Pulse obtains
the ith element of the output array using the formula:

for

Parameters

Input

Output

Return Value

Name Type Description

n integer Number of samples.

amp double-precision Pulse amplitude.

delay integer Pulse delay.

width integer Pulse width.

Name Type Description

pulsePattern double-precision array Pulse pattern array.

Name Type Description

status integer Refer to Appendix A for error codes.

pulsePatterni
amp if delay i delay width+()<≤
0 otherwise

=

i 0 1 2 … n 1–, , , ,=
LabWindows/CVI Advanced Analysis Library 2-332 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Pulse
Example
/* The following code generates the following pulse pattern

pulsePattern = {0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0, 0.0}. */

double pulsePattern[10], amp;

int n, delay, width;

n = 10;

delay = 3;

width = 5;

amp = 2.0;

Pulse (n, amp, delay, width, pulsePattern);
© National Instruments Corporation 2-333 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PulseParam

rs that
PulseParam
int status = PulseParam (double pulsePattern[], int n, double *amp,

double *amp90, double *amp50, double *amp10,
double *top, double *base, double *topOvershoot,
double *baseOvershoot, int *delay, int *width,
int *riseTime, int *fallTime, double *slewRate);

Purpose
Analyzes the input array values for a pulse pattern and determines the pulse paramete
best describe the pulse pattern. PulseParam assumes that the input array has a bimodal
distribution, a distribution that contains two distinct peak values.

Parameters
Input

Output

Name Type Description

pulsePattern double-precision array Input array.

n integer Number of elements.

Name Type Description

amp double-precision Amplitude.

amp90 double-precision 90% amplitude.

amp50 double-precision 50% amplitude.

amp10 double-precision 10% amplitude.

top double-precision Top value.

base double-precision Base value.

topOvershoot double-precision Top overshoot.

baseOvershoot double-precision Base overshoot.

delay integer Pulse delay.

width integer Width delay.

riseTime integer Rise time.
LabWindows/CVI Advanced Analysis Library 2-334 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — PulseParam
Return Value

Parameter Discussion
The returned parameters are as follows:

The parameters delay, width , riseTime, and fallTime are integers because the input is a
discrete representation of a signal.

fallTime integer Fall time.

slewRate double-precision Slew rate.

Name Type Description

status integer Refer to Appendix A for error codes.

Name Type Description

top upper mode=

base lower mode=

amp top base–=

amp90 90% amplitude=

amp50 50% amplitude=

amp10 10% amplitude=

topOvershoot maximum value top–=

baseOvershoot base minimum value–=

delay rising edge index (50% amplitude)=

width falling edge index (50% amplitude)delay–=

riseTime 90% amplitude index 10% amplitude index of rising edge–=

fallTime 10% amplitude index 90% amplitude index on falling edge–=

slewRate 90% amplitude 10% amplitude–() riseTime⁄=
© National Instruments Corporation 2-335 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — PulseParam
Example
/* Generate a noisy pulse pattern and determine its pulse

parameters. */

double x[200], y[200], amp, amp90, amp50, amp10, top, base;

double topOvershoot, baseOvershoot, slewRate, noiseLevel;

int n, delay, width, riseTime, fallTime;

n = 200;

amp = 5.0;

delay = 50;

width = 100;

noiseLevel = 0.5;

Pulse (n, amp, delay, width, x); /* Generate a pulse. */

WhiteNoise (n, noiseLevel, 17, y); /* Generate noise signal. */

Add1D (x, y, n, x); /* Noisy Pulse. */

PulseParam (x, n, &, &90, &50, &10, &top, &base,

&topOvershoot, &baseOvershoot, &delay, &width,

&riseTime, &fallTime, &slewRate);
LabWindows/CVI Advanced Analysis Library 2-336 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — QR

r

:
stems
QR
int status = QR (void *A, int n, int m, int algorithm, void *Q, void *R);

Purpose
Calculates the QR factorization of the real input matrix A. The input matrix can be square o
rectangular.

The following formula defines the QR factorization of a n-by-m matrix A:

QR can calculate factorization in many ways. QR provides three methods for the factorization
Householder, Givens, and Fast Givens. You can use QR factorization to solve linear sy
with more equations than unknowns.

Note In the case of rectangular matrices with (number of rows greater than
number of columns), you cannot use the Fast Givens algorithm.

Parameters
Input

Output

where Q is an orthogonal matrix of dimensions n-by-n
R is an upper triangular matrix of dimensions n-by-m

Name Type Description

A double-precision
2D array

Input real matrix.

n integer Number of rows in A.

m integer Number of columns in A.

algorithm integer Algorithm to use. Refer to the following
Parameter Discussion section.

Name Type Description

Q double-precision
2D array

Calculated orthogonal matrix of the
QR factorization.

R double-precision
2D array

Calculated upper triangular matrix of the
QR factorization.

A QR=

n m>
© National Instruments Corporation 2-337 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — QR
Return Value

Parameter Discussion
Table 2-45 shows valid algorithm values for the factorization methods.

Name Type Description

status integer Refer to Appendix A for error codes.

Table 2-45. Valid Algorithm Values

Algorithm Value

Householder 0

Givens 1

Fast Givens 2
LabWindows/CVI Advanced Analysis Library 2-338 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — QScale1D
QScale1D
int status = QScale1D (double x[], int n, double y[], double *scale);

Purpose
Scales the input array by its maximum absolute value. QScale1D can obtain the ith element
of the scaled array using the following formula:

 where scale is the maximum absolute value in the input array

QScale1D determines the constant scale.

QScale1D can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

y double-precision array Scaled array.

scale double-precision Scaling constant.

Name Type Description

status integer Refer to Appendix A for error codes.

yi

xi

scale
-------------=
© National Instruments Corporation 2-339 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — QScale2D
QScale2D
int status = QScale2D (void *X, int n, int m, void *Y, double *scale);

Purpose
Scales a 2D input array by its maximum absolute value. QScale2D can obtain the (i, j)th
element of the scaled array using the following formula:

 where scale is the maximum absolute value of the input array

QScale2D determines the constant scale.

QScale2D can perform the operation in place; that is, X and Y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

X double-precision
2D array

Input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

Y double-precision
2D array

Scaled array.

scale double-precision Scaling constant.

Name Type Description

status integer Refer to Appendix A for error codes.

yi j,
xi j,

scale
-------------=
LabWindows/CVI Advanced Analysis Library 2-340 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Ramp
Ramp
int status = Ramp (int n, double first, double last, double rampvals[]);

Purpose
Generates an output array that represents a ramp pattern. Ramp obtains the ith element of the
output array using the formula:

 where

Parameters
Input

Output

Return Value

Parameter Discussion
The value of last does not have to be greater than the value of first . If the condition

 is met, Ramp generates a negatively sloped ramp pattern.

Name Type Description

n integer Number of samples.

first double-precision Initial ramp value.

last double-precision Final ramp value.

Name Type Description

rampvals double-precision array Ramp array.

Name Type Description

status integer Refer to Appendix A for error codes.

rampvalsi first i∆x+= ∆x last first–
n 1–

--------------------------=

last first<
© National Instruments Corporation 2-341 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Ramp
Example
/* The following code generates the pattern {-5.0, -4.0, -3.0, -2.0,

-1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0}. */

double rampvals[11], first, last;

int n;

n = 11;

first = -5.0;

last = 5.0;

Ramp (n, first, last, rampvals);
LabWindows/CVI Advanced Analysis Library 2-342 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — RatInterp

d

ints
RatInterp
int status = RatInterp (double x[], double y[], int n, double x_val,

double *Interp_Val, double *Error);

Purpose
Returns the value of a particular rational function passing through the n points
(xi, f(xi)) at x_val, given a set of n points (xi, f(xi)) in the plane where f is some function, an
a value x_val at which f is to be interpolated. P and Q are polynomials, and n is the number
of elements in x.

The function is the unique rational function that passes through the given po
and satisfies the following conditions:

 where deg() is the order of the polynomial function

Parameters
Input

Name Type Description

x double-precision array Values at which the function to be
interpolated is known.

y double-precision array Function values at the known x values.

n integer Number of points in x and in y.

x_val double-precision Value at which the rational function is to be
interpolated or extrapolated.

P x() Q x()⁄

P x() Q x()⁄

deg P() deg Q() n 1–
2

= = if n is odd

deg Q() n
2
---=

deg P() n
2
--- 1–=

 if n is even
© National Instruments Corporation 2-343 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — RatInterp

.

Output

Return Value

Using This Function
All input arrays should be the same size. If the value of x_val is in the range of x, RatInterp
performs interpolation; otherwise, it performs extrapolation. If x_val is too far from the range
of x, Error might be large, and RatInterp would not produce a satisfactory extrapolation

Example
/* Pick points randomly, pick an x in the range of x-values, run a

rational function through the points and interpolate at x_val. */

double x[10], y[10], Interp_Val, Error, x_val, high, low;

int n, i;

n = 10;

WhiteNoise (n, 5.0, 17, x);

WhiteNoise (n, 5.0, 17, y);

high = x[0];

low = x[0];

for(i=0; i<n; i++) {

if (x[i] > high) high = x[i];

if (x[i] < low) low = x[i];

}

x_val = (high + low)/2.0;

RatInterp (x, y, n, x_val, &Interp_Val, &Error);

Name Type Description

Interp_Val double-precision Interpolated value at x_val.

Error double-precision Estimate of the error in the interpolation.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-344 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ReFFT

t
ReFFT
int status = ReFFT (double x[], double y[], int n);

Purpose
Calculates the Fourier Transform of a real input array.

Parameters
Input

Output

Return Value

Parameter Discussion
n must be a power of two. ReFFT performs the operation in place and overwrites the inpu
array x. The output array y must be at least the same size as the input array x because
performing an FFT on a real array results in a complex sequence.

Example
/* Generate an array with random numbers and calculate the Fast Fourier

Transform. */

double x[256], y[256];

int n;

n = 256;

Uniform (n, x);

ReFFT (x, y, n);

Name Type Description

x double-precision array Array to transform.

n integer Number of elements.

Name Type Description

x double-precision array Real part of Fast Fourier Transform.

y double-precision array Imaginary part of Fast Fourier Transform.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-345 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ReInvFFT

 real

ut
ReInvFFT
int status = ReInvFFT (double x[], double y[], int n);

Purpose
Calculates the inverse Fast Fourier Transform of a complex sequence that results in a
output array.

Parameters
Input

Output

Return Value

Parameter Discussion
n must be a power of two. ReInvFFT performs the operation in place and overwrites the inp
array x. The y array remains unchanged.

Example
/* Generate an array with random numbers and calculate its real inverse

Fast Fourier Transform. */

double x[256], y[256];

int n;

n = 256;

Uniform (n, 17, x);

Uniform (n, 17, y);

ReInvFFT (x, y, n);

Name Type Description

x double-precision array Real part to transform.

y double-precision array Imaginary part to transform.

n integer Number of elements.

Name Type Description

x double-precision array Real inverse Fast Fourier Transform.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-346 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ResetIIRFilter

n is
ResetIIRFilter
int status = ResetIIRFilter (IIRFilterPtr filterInformation);

Purpose
Sets the reset flag in the filterInfo filter structure so that the internal filter state informatio
reset to zero before the next cascade IIR filtering operation.

Parameters
Input

Return Value

Name Type Description

filterInformation IIRFilterPtr Pointer to the filter structure that contains
the filter coefficients and the internal filter
information.

Refer to the AllocIIRFilterPtr
function description for more information
about the filter structure.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-347 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ResetIIRFilter
Example
/* How to use function ResetIIRFilter. */

double fs, fl, fh, x[256], y[256];

int type, order, n;

IIRFilterPtr filterInfo;

n = 256;

fs = 1000.0;

fl = 200.0;

order = 5;

type = 0; /* lowpass */

filterInfo = AllocIIRFilterPtr(type, order);

if(filterInfo!=0) {

Bw_CascadeCoef(fs, fl, fh, filterInfo);

Uniform(n, 17, x);

IIRCascadeFiltering(x, n, filterInfo, y);

Uniform(n,20,x);

ResetIIRFilter(filterInfo); /* Reset the filter for a new data

 set. */

IIRCascadeFiltering(x, n, filterInfo, y);

FreeIIRFilterPtr(filterInfo);

}

LabWindows/CVI Advanced Analysis Library 2-348 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Reverse
Reverse
int status = Reverse (double x[], int n, double y[]);

Purpose
Reverses the order of the elements of the input array using the following formula:

 for

Reverse can perform the operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

y double-precision array Reversed array.

Name Type Description

status integer Refer to Appendix A for error codes.

yi xn i– 1–= i 0 1 … n 1–, , ,=
© National Instruments Corporation 2-349 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — RMS
RMS
int status = RMS (double x[], int n, double *rmsval);

Purpose
Calculates the root-mean-square (rms) value of the input array. RMS uses the following
formula to find the rms value:

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

Name Type Description

rmsval double-precision Root-mean-square value.

Name Type Description

status integer Refer to Appendix A for error codes.

rms

xi
2

i 0=

n 1–

∑
n

--------------=
LabWindows/CVI Advanced Analysis Library 2-350 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SawtoothWave
SawtoothWave
int status = SawtoothWave (int n, double amp, double f, double *phase,

double x[]);

Purpose
Generates an array that contains a sawtooth wave. SawtoothWave generates the output
arrayx according to the following formula:

You can use SawtoothWave to simulate a continuous acquisition from a sawtooth wave
function generator. The unit of the input phase is in degrees, and SawtoothWave sets phase
to () modulo 360.0 before it returns.

Parameters
Input

Name Type Description

n integer Number of samples to generate.

amp double-precision Amplitude of the resulting signal.

f double-precision Frequency of the resulting signal in
normalized units of cycles/sample.

phase double-precision Pointer to the initial phase, in degrees, of
the generated signal.

xi amp sawtooth phase f 360.0 i××+()×=

where sawtooth p()

p modulo 360.0
180.0

--- 0 p modulo 360.0 180.0<≤

p modulo 360.0
180.0

--- 2– 180.0 p modulo 360.0 360.0<≤

=

phase f 360.0 n××+
© National Instruments Corporation 2-351 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SawtoothWave

Output

Return Value

Name Type Description

phase double-precision Upon completion of SawtoothWave , phase
points to the phase of the next portion of the
signal. Use this parameter in the next call to
SawtoothWave to simulate a continuous
function generator.

x double-precision array Contains the generated sawtooth
wave signal.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-352 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Scale1D

ly
Scale1D
int status = Scale1D (double x[], int n, double y[], double *offset,

double *scale);

Purpose
Scales the input array. The scaled output array is in the range [–1 : 1]. Scale1D can obtain
the ith element of the scaled array using the following formulas:

where max and min are the maximum and minimum values in the input array, respective

Scale1D determines the values of the constants scale and offset. Scale1D can perform the
operation in place; that is, x and y can be the same array.

Parameters
Input

Output

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

y double-precision array Scaled array.

offset double-precision Offsetting constant.

scale double-precision Scaling constant.

yi

xi offset–

scale
------------------------=

scale
max min–

2
--------------------------=

offset min scale+=
© National Instruments Corporation 2-353 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Scale1D
Return Value

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-354 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Scale2D

ly
Scale2D
int status = Scale2D (void *X, int n, int m, void *Y, double *offset,

double *scale);

Purpose
Scales the input array. The scaled output array is in the range [–1 : 1]. Scale2D can obtain
the (i, j)th element of the scaled array using the following formulas:

where max and min are the maximum and minimum values in the input array, respective

Scale2D determines the values of the constants scale and offset.

Scale2D can perform the operation in place; that is, X and Y can be the same array.

Parameters
Input

Output

Name Type Description

X double-precision
2D array

Input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

Y double-precision
2D array

Scaled array.

offset double-precision Offsetting constant.

scale double-precision Scaling constant.

yi j,
xi j, offset–

scale
----------------------------=

scale
max min–

2
--------------------------=

offset min scale+=
© National Instruments Corporation 2-355 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Scale2D
Return Value

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-356 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ScaledWindow

e

ScaledWindow
int status = ScaledWindow (double x[], int n, int windowType,

WindowStruct *windowConstants);

Purpose
Applies a scaled window to the time-domain signal and outputs window constants for
further analysis.

The windowed time-domain signal is scaled so that when ScaledWindow calculates the
power or amplitude spectrum of the windowed waveform, all windows provide the sam
level within the accuracy constraints of the window. ScaledWindow also returns important
window constants for the window you select. These constants are useful when you use
functions that perform computations on the power spectrum, such as
PowerFrequencyEstimate .

windowType has the values shown in Table 2-46.

x is the time-domain signal multiplied by the scaled window.

windowConstants is a structure that contains the following important constants for the
selected window. WindowStruct is defined by the following C typedef statement.

typedef struct {

double enbw;

double coherentgain;

} WindowStruct;

Table 2-46. windowType Values

Value Description

0 Uniform

1 Hanning

2 Hamming

3 Blackman-Harris

4 Exact Blackman

5 Blackman

6 Flattop

7 Four Term Blackman-Harris

8 Seven Term Blackman-Harris
© National Instruments Corporation 2-357 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ScaledWindow

e to
enbw is the equivalent noise bandwidth of the window you select. You can use this valu
calculate the power in a given frequency span.

coherentgain is the peak gain of the window, relative to the peak gain of the
Rectangular window. You can use this value to normalize peak signal gains to that of
the Rectangular window.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array that contains time-domain
signal to window.

n integer Number of elements in the input array.

windowType integer Type of the window function to apply to
the input signal.

Name Type Description

x double-precision array Windowed version of x.

windowConstants WindowStruct Pointer to a structure that contains the
following useful constants for the selected
window:

enbw is the equivalent noise bandwidth
of the selected window. You can use this
value to calculate the power in a given
frequency span.

coherentgain is the peak gain of the
window, relative to the peak gain of the
Uniform window. ScaledWindow uses
this value to normalize peak signal gains
to that of the Uniform window.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-358 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Set1D
Set1D
int status = Set1D (double x[], int n, double a);

Purpose
Sets the elements of the x array to a constant value.

Parameters
Input

Output

Return Value

Name Type Description

n integer Number of elements in x.

a double-precision Constant value.

Name Type Description

x double-precision array Result array; set to the value of a.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-359 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Shift

.

ing
ut
Shift
int status = Shift (double x[], int n, int shifts, double y[]);

Purpose
Shifts the elements of the input array using the following formula:

You can specify the number of shifts to be in the positive (right) or negative (left) direction

Parameters
Input

Output

Return Value

Parameter Discussion
This is not a circular shift. Shift does not retain the shifted values and replaces the trail
portion of the shift with zero. Shift cannot perform the operation in place; that is, the inp
and output arrays cannot be the same.

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

shifts integer Number of shifts.

Name Type Description

y double-precision array Shifted array.

Name Type Description

status integer Refer to Appendix A for error codes.

yi xi shifts–=
LabWindows/CVI Advanced Analysis Library 2-360 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Shift
Example
/* Generate an array with random numbers and shift it by 20 samples. */

double x[200], y[200];

int n;

int shifts;

n = 200;

shifts = 20;

Uniform (n, 17, x);

Shift (x, n, shifts, y);
© National Instruments Corporation 2-361 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Sinc
Sinc
int status = Sinc (int n, double amp, double delay, double dt, double x[]);

Purpose
Generates an array that contains a sinc pattern. Sinc generates the output array x according
to the following formula:

 where

Parameters
Input

Output

Return Value

Name Type Description

n integer Number of samples to generate.

amp double-precision Amplitude of the resulting signal.

delay double-precision Shifts the peak value of the sinc pattern to
the index.

dt double-precision Sampling interval; inversely proportional to
the width of the main lobe of the sinc pattern
Sinc generates.

Name Type Description

x double-precision array Contains the sinc pattern Sinc generates.

Name Type Description

status integer Refer to Appendix A for error codes.

xi amp sinc i dt delay–×()×= sinc x() πx()sin
πx

-------------------=
LabWindows/CVI Advanced Analysis Library 2-362 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SinePattern
SinePattern
int status = SinePattern (int n, double amp, double phase, double cycles,

double sine[]);

Purpose
Generates an output array with a sinusoidal pattern. SinePattern obtains the ith element of
the double-precision output array using the following formula:

SinePattern assumes the phase value is in degrees and not in radians.

Parameters
Input

Output

Return Value

Name Type Description

n integer Number of samples.

amp double-precision Amplitude.

phase double-precision Phase, in degrees.

cycles double-precision Number of cycles.

Name Type Description

sine double-precision array Sinusoidal pattern.

Name Type Description

status integer Refer to Appendix A for error codes.

sinei amp 2πi cycles×
n

------------------------------- π phase×
180.0

-------------------------+
 sin×=
© National Instruments Corporation 2-363 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SinePattern
Example
/* The following code generates a cosinusoidal pattern. */

double x[8], amp, phase, cycles;

int n;

n = 8;

amp = 1.0;

phase = 90.0;

cycles = 1.5;

SinePattern (n, amp, phase, cycles, x);
LabWindows/CVI Advanced Analysis Library 2-364 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SineWave

ncy

0 Hz,

SineWave
int status = SineWave (int n, double amp, double f, double *phase,

double x[]);

Purpose
Generates an array that contains a sine wave. SineWave generates the ith element of the
output array x according to the following formula:

 where

where the normalized frequency is the ratio of actual frequency to the sampling freque

For example, if the actual frequency desired is 100 Hz and the sampling frequency is 50
the normalized frequency is 0.2. You can use SineWave to simulate a continuous acquisition
from a sine wave function generator. The unit of the input phase is in degrees, and SineWave
sets phase to () modulo 360.0 before it returns.

Parameters
Input

Output

Name Type Description

n integer Number of samples to generate.

amp double-precision Amplitude of the resulting signal.

f double-precision Frequency of the resulting signal in
normalized units of cycles/sample.

phase double-precision pointer Pointer to the initial phase, in degrees, of
the sine wave signal SineWave generates.

Name Type Description

phase double-precision Upon completion of SineWave , phase
points to the phase of the next portion of the
signal. Use this parameter in the next call to
SineWave to simulate a continuous
function generator.

x double-precision array Contains the sine wave signal SineWave
generates.

xi amp phi()sin×= phi
π

180.0
------------- phase f 360.0 i××+()=

phase f 360.0 n××+
© National Instruments Corporation 2-365 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SineWave
Return Value

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-366 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Sort
Sort
int status = Sort (double x[], int n, int direction, double y[]);

Purpose
Sorts the x input array in ascending or descending order. Sort can perform the operation in
place; that is, x and y can be the same array.

Parameters
Input

Output

Return Value

Example
/* Generate a random array of numbers and sort them in ascending

order. */

double x[200], y[200];

int n;

int dir;

n = 200;

dir = 0;

Uniform (n, 17, x);

Sort (x, n, dir, y);

Name Type Description

x double-precision array Input array.

n integer Number of elements to sort.

direction integer 0 = ascending
nonzero = descending

Name Type Description

y double-precision array Sorted array.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-367 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SpecialMatrix

t

e
SpecialMatrix
int status = SpecialMatrix (int matrixType, int m, double x[], int nx,

double y[], int ny, void *Z);

Purpose
Generates a special type of real matrix depending on the value of matrixType . There are
five possible matrix types: Identity, Diagonal, Toeplitz, Vandermonde, and Companion.
Table 2-47 shows each matrix type and its behavior.

Table 2-47. Matrix Type and Behaviors

Matrix Type Behavior

Identity SpecialMatrix generates an m-by-m identity matrix.

Diagonal SpecialMatrix generates an nx-by-nx diagonal matrix with
diagonal elements that are the elements of x.

Toeplitz SpecialMatrix generates an nx-by-ny Toeplitz matrix, which has x
as its first column and y as its first row. If the first element of x and y
are different, SpecialMatrix uses the first element of x.

Vandermonde SpecialMatrix generates an nx-by-nx Vandermonde matrix in
which the column, for , equals the

 power of the elements of x. The elements of a
Vandermonde matrix are as follows:

 where

Companion SpecialMatrix generates an -by- companion matrix.
Assuming that the vector x consists of polynomial coefficients where
the first element of x is the coefficient of the highest order and the las
element of x is the constant term in the polynomial, SpecialMatrix
constructs the corresponding companion matrix as follows:

The first row of the matrix is

 for

and the remaining rows of the generated matrix form an identity
matrix. The eigenvalues of a companion matrix contain the roots of th
corresponding polynomial.

k
th

k 0 1 2 … nx 1–, , , ,=
nx k– 1–()th

bi j, xi
nx j– 1–= i j, 0 1 … nx 1–, , ,=

nx 1– nx 1–

b0 j 1–,
xj–

x0
-------= j 1 2 … nx 1–, , ,=
LabWindows/CVI Advanced Analysis Library 2-368 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SpecialMatrix

l
Parameters
Input

Output

Return Value

Name Type Description

matrixType integer Type of matrix to generate. Refer to the
following Parameter Discussion section.

m integer Number of rows and columns to generate
when matrixType is Identity matrix.

x double-precision array Complex vector used to generate a Diagona
matrix, Toeplitz matrix, Vandermonde
matrix, or Companion matrix.

nx integer Number of elements in vector x.

y double-precision array Second vector to use to generate the
Toeplitz matrix.

ny integer Number of elements in vector y.

Name Type Description

Z integer Generated matrix.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-369 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SpecialMatrix
Parameter Discussion
Table 2-48 shows valid matrix type values.

Table 2-48. Valid Matrix Type Values

Matrix Type Value

Identity matrix 0

Diagonal matrix 1

Toeplitz matrix 2

Vandermonde matrix 3

Companion matrix 4
LabWindows/CVI Advanced Analysis Library 2-370 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Spectrum
Spectrum
int status = Spectrum (double x[], int n);

Purpose
Calculates the power spectrum of the input real data. Spectrum performs the operation in
place and overwrites the input array x. Spectrum uses the following formula to obtain the
power spectrum ps:

n must be a power of two.

Parameters
Input

Output

Return Value

Example
/* Generate an array with random numbers and calculate its power

spectrum. */

double x[256];

int n;

n = 256;

Uniform (n, 17, x);

Spectrum (x, n);

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

x double-precision array Power spectrum.

Name Type Description

status integer Refer to Appendix A for error codes.

ps FFT x() 2

n2
------------------------=
© National Instruments Corporation 2-371 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SpectrumUnitConversion

,

 from
SpectrumUnitConversion
int status = SpectrumUnitConversion (double spectrum[], int n, int type,

int scalingMode, int displayUnits, double df,
WindowStruct windowConstants,
double convertedSpectrum[], char unitString[]);

Purpose
Converts the input spectrum, which is the power, amplitude, or gain, to alternate formats
including log, decibels or dBm, and spectral density.

spectrum is the input array that contains a spectrum of the type the type selector specifies.
type has the values shown in Table 2-49.

unitString is a character array that specifies the base unit of the time domain waveform
which SpectrumUnitConversion calculates the input spectrum. The signal unit is often
set to "V" (volts). The size of unitString must be at least .

scalingMode has three selections for the output unit type, as shown in Table 2-50.

Table 2-49. Valid type Values

Value Description

0 Power (volts rms square); AutoSpectrum calculates

1 Amplitude (volts, root-mean-square); AmpPhaseSpectrum calculates

2 Gain (amplitude ratio); TransferFunction calculates

Table 2-50. Valid scalingMode Values

Value Description

0 Linear

1 Decibels

2 dBm

12 size of unitStrin g+()
LabWindows/CVI Advanced Analysis Library 2-372 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SpectrumUnitConversion

hown

 (6, 7).

ats,
displayUnit has the selections for the display unit, assuming volts for the base unit, as s
in Table 2-51.

The last four selections are amplitude spectral density (4, 5) and power spectral density
The structure windowConstants contains constants for the window you select in
ScaledWindow . You need this input only when you use the spectral density output form
or the last four display unit selections.

Parameters
Input

Table 2-51. Valid displayUnit Values

Value Description

0 Vrms (volts, root-mean-square)

1 Vpk (volts peak)

2 Vrms
2
 (volts rms square)

3 Vpk
2 (volts peak square)

4 Vrms/ (volts, root-mean-square, per root hertz)

5 Vpk/ (volts peak per root hertz)

6 Vrms
2/Hz (volts rms square per hertz)

7 Vpk
2/Hz (volts peak square per hertz)

Name Type Description

spectrum double-precision array Input array that contains a spectrum
of the type the spectrum selector
specifies. It should be a power,
amplitude, or gain spectrum.

n integer Number of elements in the input
spectrum.

type integer Type of the input spectrum.

scalingMode integer Type of the scaling of the output
spectrum.

displayUnits integer Unit of the output spectrum, assuming
"V" for the input unitString .

Hz

Hz
© National Instruments Corporation 2-373 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SpectrumUnitConversion
Output

df double-precision The frequency interval, in hertz,
as output by AmpPhaseSpectrum ,
AutoPowerSpectrum ,
CrossPowerSpectrum ,
NetworkFunctions , or
TransferFunction .

windowConstants WindowStruct Structure that contains the following
useful constants for the selected
window:

enbw is the equivalent noise bandwidth
of the selected window. You can use
this value to calculate the power in a
given frequency span.

coherentgain is the peak gain of
the window, relative to the peak
gain of the Rectangular window.
SpectrumUnitConversion uses
this value normalize peak signal gains
to that of the Rectangular window.
ScaledWindow outputs this structure.

unitString string String that contains, on input, the base
unit of the analyzed signal; "V" for a
voltage signal.

Name Type Description

convertedSpectrum double-precision array Input spectrum, power, amplitude, or
gain, to convert to alternate formats,
including log, decibels or dBm, and
spectral density. The size of this array
must be at least n.

unitString string Contains, upon completion of
SpectrumUnitConversion , the unit
of the output convertedSpectrum.
The size of this string must be at least

.

Name Type Description

12 size of unitStrin g+()
LabWindows/CVI Advanced Analysis Library 2-374 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SpectrumUnitConversion
Return Value

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-375 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SpInterp
SpInterp
int status = SpInterp (double x[], double y[], double y2[], int n,

double x_val, double *Interp_Val);

Purpose
Performs a cubic spline interpolation of the function f at a value x_val, where x_val is in the
same range as xi, given a tabulated function of the form for ,
with , and given the second derivatives that specify the interpolant at the n nodes
of x. The Spline procedure supplies the second derivatives. If x_val falls in the interval

, the interpolated value is as follows:

 denotes the second derivative of y.

Parameters
Input

where

Name Type Description

x double-precision array x values at which f is known; these values
must be in ascending order.

y double-precision array Function values .

y2 double-precision array Array of second derivatives that specify the
interpolant.

n integer Number of elements in x, y, and y2.

x_val double-precision x value at which f is to be interpolated.

yi f xi()= i 0 1 … n 1–, , ,=
x xi 1+<

xi xi 1+,[]

Interp_Val Ayi Byi 1+ Cy″ i Dy″ i 1++ + +=

A
xi 1+ x_val–

xi 1+ xi–
-----------------------------=

B 1 A–=

C
A3 A–() xi 1+ xi–()2

6
--=

D
B3 B–() xi 1+ xi–()2

6
--=

y″

yi f xi()=
LabWindows/CVI Advanced Analysis Library 2-376 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SpInterp
Output

Return Value

Example
/* Choose ascending X-values. Pick corresponding Y-values randomly.

Set boundary conditions and specify the cubic spline interpolant to

run through the points. Pick an x in the same range as X and

interpolate. Pick another x and interpolate again. */

double X[100], Y[100], Y2[100], b1, b2, x_val;

int n, i;

n = 100;

for(i=0; i<n; i++)

X[i] = i * 0.1;

WhiteNoise (n, 5.0, 17, Y);

b1=0.0;

b2=0.0;

Spline (X, Y, n, b1, b2, Y2);

x_val = 0.331;

SpInterp (X, Y, Y2, n, x_val, &Interp_Val);

x_val = 0.7698;

SpInterp (X, Y, Y2, n, x_val, &Interp_Val);

Name Type Description

Interp_Val double-precision Interpolated value.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-377 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Spline

d

 the
Spline
int status = Spline (double x[], double y[], int n, double b1, double b2,

double y2[]);

Purpose
Calculates the second derivatives used by the cubic spline interpolant, given a tabulate
function of the form for , with , and given the
boundary conditions b1 and b2 such that the interpolant’s second derivative matches the
specified values at x0 and .

You can use this array with SpInterp to calculate an interpolation value.

Parameters
Input

Output

Return Value

Parameter Discussion
These second derivatives represent the continuously differentiable curve to run though
n points (xi, yi).

Name Type Description

x double-precision array x values at which f is known; these values
must be in ascending order.

y double-precision array Function values .

n integer Number of elements in x, y, and y2.

b1 double-precision First boundary condition .

b2 double-precision Second boundary condition .

Name Type Description

y2 double-precision array Array of second derivatives that specify the
interpolant.

Name Type Description

status integer Refer to Appendix A for error codes.

yi f xi()= i 0 1 … n 1–, , ,= xi xi 1+<

xn 1–

yi f xi()=

x″0

x″n 1–()
LabWindows/CVI Advanced Analysis Library 2-378 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Spline
Example
/* Choose ascending X-values. Pick corresponding Y-values randomly.

Set boundary conditions and specify the cubic spline interpolant to

run through the points. */

double X[100], Y[100], Y2[100], b1, b2;

int n, i;

n = 100;

for(i=0; i<n; i++)

X[i] = i * 0.1;

WhiteNoise (n, 5.0, 17, Y);

b1=0.0;

b2=0.0;

Spline (X, Y, n, b1, b2, Y2);
© National Instruments Corporation 2-379 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SquareWave

ion
SquareWave
int status = SquareWave (int n, double amp, double f, double *phase,

double dutyCycle, double x[]);

Purpose
Generates an array that contains a square wave. SquareWave generates the output array x
according to the following formula:

 where f is normalized frequency

You can use SquareWave to simulate a continuous acquisition from a square wave funct
generator. The unit of the input phase is in degrees, and SquareWave sets phase to
() modulo 360.0 before it returns.

Parameters
Input

Name Type Description

n integer Number of samples to generate.

amp double-precision Amplitude of the resulting signal.

f double-precision Frequency of the resulting signal in
normalized units of cycles/sample.

dutyCycle double-precision Contains the duty cycle, in percent, of the
square wave signal SquareWave generates.

phase double-precision Points to the initial phase, in degrees, of the
square wave signal SquareWave generates.

xi amp squarephase f 360.0 i××+()×=

square p()
1.0 0 p modulo 360.0

duty
100.0
------------- 360.0×<≤

1.0– duty
100.0
------------- 360.0 p modulo 360.0 360.0<≤×

=

phase f 360.0 n××+
LabWindows/CVI Advanced Analysis Library 2-380 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SquareWave

Output

Return Value

Name Type Description

phase double-precision Upon completion of SquareWave , phase
points to the phase of the next portion of the
signal. Use this parameter in the next call to
SquareWave to simulate a continuous
function generator.

x double-precision array Contains the square wave signal
SquareWave generates.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-381 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — StdDev

StdDev
int status = StdDev (double x[], int n, double *meanval, double *sDev);

Purpose
Calculates the standard deviation and the mean, or average, values of the input array.
StdDev uses the following formulas to find the mean and the standard deviation:

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

Name Type Description

meanval double-precision Mean value.

sDev double-precision Standard deviation.

Name Type Description

status integer Refer to Appendix A for error codes.

meanval

xi
i 0=

n 1–

∑
n

-------------=

sDev

xi meanval–()2

i 0=

n 1–

∑
n

--=
LabWindows/CVI Advanced Analysis Library 2-382 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Sub1D
Sub1D
int status = Sub1D (double x[], double y[], int n, double z[]);

Purpose
Subtracts two 1D arrays. Sub1D can obtain the ith element of the output array using the
following formula:

Sub1D can perform the operation in place; that is, z can be either x or y.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array x input array.

y double-precision array y input array.

n integer Number of elements to subtract.

Name Type Description

z double-precision array Result array.

Name Type Description

status integer Refer to Appendix A for error codes.

zi xi yi–=
© National Instruments Corporation 2-383 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Sub2D
Sub2D
int status = Sub2D (void *X, void *Y, int n, int m, void *Z);

Purpose
Subtracts two 2D arrays. Sub2D obtains the (i, j)th element of the output array using the
formula:

Sub2D can perform the operation in place; that is, Z can be either X or Y.

Parameters
Input

Output

Return Value

Name Type Description

X double-precision
2D array

X input array.

Y double-precision
2D array

Y input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

Z double-precision
2D array

Result array.

Name Type Description

status integer Refer to Appendix A for error codes.

zi j, xi j, yi j,–=
LabWindows/CVI Advanced Analysis Library 2-384 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Subset1D

 you
Subset1D
int status = Subset1D (double x[], int n, int index, int length, double y[]);

Purpose
Extracts a subset of the input array. The output array contains the number of elements
specify by the length. Subset1D starts copying from x to y at the index element of x.

Parameters
Input

Output

Return Value

Example
/* The following example generates y = {0.0, 1.0, 2.0, 3.0}. */

double x[11], y[4], first, last;

int n, index, length;

n = 11;

index = 5;

length = 4;

first = -5.0;

last = 5.0;

Ramp (n, first, last, x);

Subset1D (x, n, index, length, y);

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

index integer Initial index for the subset.

length integer Number of elements to copy to the subset.

Name Type Description

y double-precision array Subset array.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-385 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Sum1D
Sum1D
int status = Sum1D (double x[], int n, double *sum);

Purpose
Finds the sum of the elements of the input array. Sum1D obtains the sum of the elements using
the following formula:

Parameters
Input

Output

Return Value

Example
/* Generate a random array and sum the elements. */

double x[20], sum;

int n;

n = 20;

Uniform (n, 17, x);

Sum1D (x, n, &sum);

Name Type Description

x double-precision array Input array.

n integer Number of elements.

Name Type Description

sum double-precision Sum of elements.

Name Type Description

status integer Refer to Appendix A for error codes.

sum xi
i 0=

n 1–

∑=
LabWindows/CVI Advanced Analysis Library 2-386 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Sum2D
Sum2D
int status = Sum2D (void *X, int n, int m, double *sum);

Purpose
Finds the sum of the elements in the input 2D array. Sum2D obtains the sum using the
following formula:

Parameters
Input

Output

Return Value

Name Type Description

X double-precision
2D array

Input array.

n integer Number of elements in first dimension.

m integer Number of elements in second dimension.

Name Type Description

sum double-precision Sum of the elements.

Name Type Description

status integer Refer to Appendix A for error codes.

sum xi j,

j 0=

m 1–

∑
i 0=

n 1–

∑=
© National Instruments Corporation 2-387 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SVD

x

g

 least
t can
SVD
int status = SVD (void *A, int n, int m, void *U, double s[], void *V);

Purpose
Calculates the Singular Value Decomposition (SVD) factorization of the real input matriA.
The input matrix can be square or rectangular.

The following formula defines the SVD factorization of an n-by-m matrix A:

The diagonal elements of S are called the singular values of A and are arranged in descendin
order. SVD stores them in the output array s. The columns of the output matrices U and V are
the corresponding singular vectors.

The Singular Value Decomposition is an eigenvalue-like decomposition for rectangular
matrices. You can use it to calculate the condition number of a matrix or to solve linear,
square problems. SVD is useful for ill-conditioned or rank-deficient problems because i
detect small singular values.

Parameters
Input

where U is an orthogonal matrix of dimensions n-by-m
V is an orthogonal matrix of dimensions m-by-m
S is a diagonal matrix of dimensions m-by-m

Name Type Description

A double-precision
2D array

Input real matrix.

n integer Number of rows in A.

m integer Number of columns in A.

A USV
T=
LabWindows/CVI Advanced Analysis Library 2-388 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SVD
Output

Return Value

Name Type Description

U double-precision
2D array

The n-by-m orthogonal matrix
SVD factorization generates.

s double-precision array Array that contains the singular values
of A, in descending order.

V double-precision
2D array

The m-by-m orthogonal matrix
SVD factorization generates.

Name Type Description

status integer Refer to Appendix A for error codes.
© National Instruments Corporation 2-389 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SVDS

lar
re or
SVDS
int status = SVDS(void *A, int n, int m, double s[]);

Purpose
SVDS is similar to SVD, but it calculates only the singular values that result from the Singu
Value Decomposition factorization of the real input matrix. The input matrix can be squa
rectangular.

Parameters
Input

Output

Return Value

Name Type Description

A double-precision
2D array

Input real matrix.

n integer Number of rows in A.

m integer Number of columns in A.

Name Type Description

s double-precision array Array that contains the singular values of A,
in descending order.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-390 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — SymEigenValueVector

ing

tion,
nd the

SymEigenValueVector
int status = SymEigenValueVector (void *A, int n, int outputChoice,

double eigenValues[], void *eigenVectors);

Purpose
Calculates the eigenvalues and the corresponding eigenvectors x of a real, symmetric
square input matrix A. The following formula defines the eigenvalues and the correspond
eigenvectors:

The eigenvalues and the eigenvectors are all real-valued.

The outputChoice parameter determines what to calculate. Depending on your applica
you can choose to calculate just the eigenvalues or to calculate both the eigenvalues a
eigenvectors.

The eigenValues output parameter is a 1D, real array of n elements. The eigenVectors output
parameter is an n-by-n real matrix (2D array). Each ith column of this matrix is the eigenvector
that corresponds to the ith component of the eigenValues. Each eigenvector is normalized so
that its largest component equals one.

Parameters
Input

Output

Name Type Description

A double-precision
2D array

Input symmetric square matrix.

n integer Number of elements in one dimension of
the matrix.

outputChoice integer Pass 0 for eigenvalues only; 1 for both
eigenvalues and eigenvectors.

Name Type Description

eigenValues double-precision array Resulting eigenvalues of the input matrix.

eigenVectors double-precision
2D array

Resulting eigenvectors of the input matrix.
You can pass NULL if outputChoice is 0.

λ

Ax λx=
© National Instruments Corporation 2-391 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — SymEigenValueVector
Return Value

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-392 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — T_Dist
T_Dist
int status = T_Dist (double t, int n, double *p);

Purpose
Calculates the one-sided probability p:

where T is a random variable from the T-distribution with n degrees of freedom

Parameters
Input

Output

Return Value

Example
double t, p;

int n;

t = -123.456;

n = 6;

T_Dist (t, n, &p);

Name Type Description

t double-precision –∞ < t < ∞.

n integer Degrees of freedom.

Name Type Description

p double-precision Probability .

Name Type Description

status integer Refer to Appendix A for error codes.

p prob T t≤()=

0 p 1<≤()
© National Instruments Corporation 2-393 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ToPolar
ToPolar
int status = ToPolar (double x, double y, double *mag, double *phase);

Purpose
Converts the rectangular coordinates (x, y) to polar coordinates (mag, phase). ToPolar
obtains the polar coordinates using the following formulas:

The phase value is in the range .

Parameters
Input

Output

Return Value

Example
/* Convert the rectangular coordinates to polar coordinates. */

double x, y, mag, phase;

x = 1.5;

y = -2.5;

ToPolar (x, y, &mag, &phase);

Name Type Description

x double-precision x-coordinate.

y double-precision y-coordinate.

Name Type Description

mag double-precision Magnitude.

phase double-precision Phase, in radians.

Name Type Description

status integer Refer to Appendix A for error codes.

mag x2 y2+=

phase arc y
x
--

 tan=

π : π–[]
LabWindows/CVI Advanced Analysis Library 2-394 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ToPolar1D
ToPolar1D
int status = ToPolar1D (double x[], double y[], int n, double mag[],

double phase[]);

Purpose
Converts the set of rectangular coordinate points (x, y) to a set of polar coordinate points
(mag, phase). ToPolar1D obtains the ith element of the polar coordinate set using the
following formulas:

The phase value is in the range .

ToPolar1D can perform the operations in place; that is, x and mag, and y and phase, can be
the same arrays, respectively.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array x-coordinate.

y double-precision array y-coordinate.

n integer Number of elements.

Name Type Description

mag double-precision array Magnitude.

phase double-precision array Phase, in radians.

Name Type Description

status integer Refer to Appendix A for error codes.

magi xi
2 yi

2+=

phasei arc
yi

xi

 tan=

π : π–[]
© National Instruments Corporation 2-395 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — ToRect
ToRect
int status = ToRect (double mag, double phase, double *x, double *y);

Purpose
Converts the polar coordinates (mag, phase) to rectangular coordinates (x, y). ToRect
obtains the rectangular coordinates using the following formulas:

Parameters
Input

Output

Return Value

Name Type Description

mag double-precision Magnitude.

phase double-precision Phase, in radians.

Name Type Description

x double-precision x-coordinate.

y double-precision y-coordinate.

Name Type Description

status integer Refer to Appendix A for error codes.

x mag phase()cos×=

y mag phase()sin×=
LabWindows/CVI Advanced Analysis Library 2-396 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — ToRect1D
ToRect1D
int status = ToRect1D (double mag[], double phase[], int n, double x[],

double y[]);

Purpose
Converts the set of polar coordinate points (mag, phase) to a set of rectangular coordinate
points (x, y). ToRect1D obtains the ith element of the rectangular set using the following
formulas:

ToRect1D can perform the operations in place; that is, x and mag, and y and phase, can be
the same arrays, respectively.

Parameters
Input

Output

Return Value

Name Type Description

mag double-precision array Magnitude.

phase double-precision array Phase, in radians.

n integer Number of elements.

Name Type Description

x double-precision array x-coordinate.

y double-precision array y-coordinate.

Name Type Description

status integer Refer to Appendix A for error codes.

xi magi phasei()cos×=

yi magi phasei()sin×=
© National Instruments Corporation 2-397 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Trace

g
Trace
int status = Trace (void *X, int n, double *traceval);

Purpose
Finds the trace of the 2D input matrix X. The trace is the sum of the matrix elements alon
the main diagonal. Trace obtains the trace using the following formula:

The input matrix must be an n-by-n square matrix.

Parameters
Input

Output

Return Value

Name Type Description

X double-precision
2D array

Input matrix.

n integer Size of matrix.

Name Type Description

traceval double-precision Trace.

Name Type Description

status integer Refer to Appendix A for error codes.

trace xi i,
i 0=

n 1–

∑=
LabWindows/CVI Advanced Analysis Library 2-398 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — TransferFunction

m the
est.
TransferFunction
int status = TransferFunction (double stimulus[], double response[], int n,

double dt, double magHf[], double phaseHf[],
double *df);

Purpose
Calculates the single-sided transfer function, also known as the frequency response, fro
time-domain stimulus signal and the time-domain response signal of a network under t

TransferFunction calculates the transfer function Hf as follows:

and transforms this result to single-sided magnitude and phase.

Parameters
Input

Name Type Description

stimulus double-precision array Contains the time-domain signal, usually
the network stimulus.

response double-precision array Contains the time-domain signal, usually
the network response.

n integer Number of elements in the input stimulus
and response arrays. n must be a power of 2.

dt double-precision Sampling period of the time-domain
signals, usually in seconds. ,
where fs is the sampling frequency of the
time-domain signals.

Hf
FFT response()
FFT stimulus()
--=

dt 1 fs⁄=
© National Instruments Corporation 2-399 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — TransferFunction

Output

Return Value

Name Type Description

magHf double-precision array Magnitude of the averaged single-sided
transfer function between the stimulus and
response signals. This array must be at least

 elements long.

phaseHf double-precision array Phase, in radians, of the averaged
single-sided transfer function between the
stimulus and response signals. This array
must be at least elements long.

df double-precision Points to the frequency interval, in hertz, if
dt is in seconds.

Name Type Description

status integer Refer to Appendix A for error codes.

n 2⁄

n 2⁄

df 1 n dt×()⁄=
LabWindows/CVI Advanced Analysis Library 2-400 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Transpose
Transpose
int status = Transpose (void *x, int n, int m, void *y);

Purpose
Finds the transpose of a 2D input matrix. Transpose obtains the (i, j)th element of the
resulting matrix using the following formula:

Parameters
Input

Output

Note If the input matrix has n-by-m dimensions, the output matrix must have
m-by-n dimensions.

Return Value

Name Type Description

x double-precision
2D array

Input matrix.

n integer Size of first dimension.

m integer Size of second dimension.

Name Type Description

y double-precision
2D array

Transpose matrix.

Name Type Description

status integer Refer to Appendix A for error codes.

yi j, xj i,=
© National Instruments Corporation 2-401 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Triangle
Triangle
int status = Triangle (int n, double amp, double tri[]);

Purpose
Generates an output array that has a triangular pattern. Triangle obtains the ith element of
the double-precision output array using the following formulas:

Parameters
Input

Output

Return Value

Example
/* The following code generates the pattern tri = {0.0, 1.0, 2.0, 3.0,

4.0, 3.0, 2.0, 1.0}. */

double tri[8], amp;

int n;

n = 8;

amp = 4.0;

Triangle (n, amp, tri);

Name Type Description

n integer Number of samples.

amp double-precision Amplitude.

Name Type Description

tri double-precision array Triangular pattern.

Name Type Description

status integer Refer to Appendix A for error codes.

tri i

amp
1 2i n––

n

 if n is even

amp
1 2i n– 1+–

n 1–

 if n is odd

=

LabWindows/CVI Advanced Analysis Library 2-402 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — TriangleWave
TriangleWave
int status = TriangleWave (int n, double amp, double f, double *phase,

double x[]);

Purpose
Generates an array that contains a triangle wave. TriangleWave generates the output arrayx
according to the following formula:

 where

You can use TriangleWave to simulate a continuous acquisition from a triangle wave
function generator. The unit of the input phase is in degrees, and TriangleWave sets phase
to () modulo 360.0 before it returns.

Parameters
Input

Name Type Description

n integer Number of samples to generate.

amp double-precision Amplitude of the resulting signal.

f double-precision Frequency of the resulting signal in
normalized units of cycles/sample.

phase double-precision Points to the initial phase, in degrees, of the
triangle wave signal TriangleWave
generates.

xi amp tri phase f 360.0 i××+()×= f frequency, cycles/sample=

tri p()

2
p modulo 360.0

180.0
---× 0 p modulo 360.0 90.0<≤

2 1 p modulo 360.0()–
180.0

--× 90.0 p modulo 360.0 270.0<≤

2 p modulo 360.0
180.0 2.0–

---× 270.0 p modulo 360.0 360.0<≤

=

phase f 360.0 n××+
© National Instruments Corporation 2-403 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — TriangleWave

Output

Return Value

Name Type Description

phase double-precision Upon completion of TriangleWave , phase
points to the phase of the next portion of the
signal. Use this parameter in the next call to
TriangleWave to simulate a continuous
function generator.

x double-precision array Contains the triangle wave signal
TriangleWave generates.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-404 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — TriWin
TriWin
int status = TriWin (double x[], int n);

Purpose
Applies a triangular window to the x input signal. The following formula defines the
triangular window:

 for

TriWin obtains the output signal using the following formula:

 for

TriWin performs the window operation in place; that is, the windowed data x replaces the
input data x.

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input data.

n integer Number of elements in x.

Name Type Description

x double-precision array Windowed data.

Name Type Description

status integer Refer to Appendix A for error codes.

wi
1 2 i n–×–

n
-------------------------------= i 0 1 … n 1–, , ,=

xi xi wi×= i 0 1 … n 1–, , ,=
© National Instruments Corporation 2-405 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Uniform

d one.
Uniform
int status = Uniform (int n, int seed, double x[]);

Purpose
Generates an array of random numbers that are uniformly distributed between zero an

Parameters
Input

Output

Return Value

Parameter Discussion
When , Uniform generates a new random sequence using the seed value.
When , the previously generated random sequence continues.

Example
/* The following code generates an array of random numbers between

0 and 1. */

double x[20];

int n;

n = 20;

Uniform (n, 17, x);

Name Type Description

n integer Number of samples.

seed integer Seed value.

Name Type Description

x double-precision array Random pattern between 0 and 1.

Name Type Description

status integer Refer to Appendix A for error codes.

seed 0≥
seed 0<
LabWindows/CVI Advanced Analysis Library 2-406 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — UnWrap1D

nuous
UnWrap1D
int status = UnWrap1D (double phase[], int n);

Purpose
Unwraps the discontinuous phase values that are in the range to create conti
values. UnWrap1D overwrites the input array phase.

Parameters
Input

Output

Return Value

Name Type Description

phase double-precision array Array of discontinuous phase values.

n integer Number of elements.

Name Type Description

phase double-precision array Array of continuous phase values.

Name Type Description

status integer Refer to Appendix A for error codes.

π : π–[]
© National Instruments Corporation 2-407 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Variance
Variance
int status = Variance (double x[], int n, double *meanval, double *var);

Purpose
Calculates the variance and the mean, or average, values of the input array. Variance uses
the following formulas to find the mean and the variance:

Parameters
Input

Output

Return Value

Name Type Description

x double-precision array Input array.

n integer Number of elements in x.

Name Type Description

meanval double-precision Mean value.

var double-precision Variance.

Name Type Description

status integer Refer to Appendix A for error codes.

meanval

xi
i 0=

n 1–

∑
n

-------------=

var

xi meanval–()2

i 0=

n 1–

∑
n

--=
LabWindows/CVI Advanced Analysis Library 2-408 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — WhiteNoise
WhiteNoise
int status = WhiteNoise (int n, double amp, int seed, double *noise[]);

Purpose
Generates an array of random numbers that are uniformly distributed between
–amp andamp.

Parameters
Input

Output

Return Value

Parameter Discussion
When , WhiteNoise generates a new random sequence using the seed value.
When , the previously generated random sequence continues.

Example
/* The following code generates an array of random numbers between

-5 and 5. */

double x[20], amp;

int n;

n = 20;

amp = 5.0;

WhiteNoise (n, amp, 17, x);

Name Type Description

n integer Number of samples.

amp double-precision Amplitude.

seed integer Seed value.

Name Type Description

noise double-precision array Noise pattern.

Name Type Description

status integer Refer to Appendix A for error codes.

seed 0≥
seed 0<
© National Instruments Corporation 2-409 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Wind_BPF

dows

Wind_BPF
int status = Wind_BPF (double fs, double fl, double fh, int n, double coef[],

int windType);

Purpose
Designs a digital bandpass FIR linear phase filter using a windowing technique. Five win
are available. Wind_BPF generates only the filter coefficients; it does not actually perform
data filtering.

Parameters
Input

Output

Return Value

Name Type Description

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

n integer Number of filter coefficients.

windType integer Window type.

Name Type Description

coef double-precision array Filter coefficients.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-410 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Wind_BPF

e pass
fer to
Parameter Discussion
windType selects one of the five windows as shown in Table 2-52.

Using This Function
The attenuation value determines the approximate peak value of the sidelobes. Transition
bandwidth determines a frequency range over which the filter response changes from th
band to the stop band or from the stop band to the pass band. For more information, re
Discrete-Time Signal Processing by Oppenheim and Schafer.

Example
/* Design a 55-point bandpass FIR linear phase filter that can achieve

at least a 44 dB attenuation and filter the incoming signal with the

designed filter. */

double x[256], coef[55], y[310], fs, fl, fh;

int n, m, windType;

fs = 1000.0; /* sampling frequency */

fl = 200.0; /* desired lower cutoff frequency */

fh = 300.0; /* desired higher cutoff frequency */

/* pass band is from 200.0 to 300.0 */

n = 55; /* filter length */

windType = 3; /* using Hanning window */

m = 256;

Wind_BPF (fs, fl, fh, n, coef, windType);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */

Table 2-52. Valid windType Values

windType Window Attenuation (dB)
Transition

Bandwidth (fs/n)

1 Rectangular 21 0.9

2 Triangular 25 1.18

3 Hanning 44 2.5

4 Hamming 53 3.13

5 Blackman 74 4.6
© National Instruments Corporation 2-411 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Wind_BSF

ows

Wind_BSF
int status = Wind_BSF (double fs, double fl, double fh, int n, double coef[],

int windType);

Purpose
Designs a digital bandstop FIR linear phase filter using a windowing technique. Five wind
are available. Wind_BSF generates only the filter coefficients; it does not actually perform
data filtering.

Parameters
Input

Output

Return Value

Name Type Description

fs double-precision Sampling frequency.

fl double-precision Lower cutoff frequency.

fh double-precision Higher cutoff frequency.

n integer Number of filter coefficients.

windType integer Window type.

Name Type Description

coef double-precision array Filter coefficients.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-412 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Wind_BSF

tion
e pass
fer to
Parameter Discussion
windType selects one of the five windows as shown in Table 2-53.

Using This Function
The attenuation value determines the approximate peak value of the sidelobes. Transi
bandwidth determines a frequency range over which the filter response changes from th
band to the stop band or from the stop band to the pass band. For more information, re
Discrete-Time Signal Processing by Oppenheim and Schafer.

Example
/* Design a 55-point bandstop FIR linear phase filter that can achieve

at least a 44 dB attenuation and filter the incoming signal with the

designed filter. */

double x[256], coef[55], y[310], fs, fl, fh;

int n, m, windType;

fs = 1000.0; /* sampling frequency */

fl = 200.0; /* desired lower cutoff frequency */

fh = 300.0; /* desired higher cutoff frequency */

/* stop band is from 200.0 to 300.0 */

n = 55; /* filter length */

windType = 3; /* using Hanning window */

m = 256;

Wind_BSF (fs, fl, fh, n, coef, windType);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */

Table 2-53. Valid windType Values

windType Window Attenuation (dB)
Transition

Bandwidth (fs/n)

1 Rectangular 21 0.9

2 Triangular 25 1.18

3 Hanning 44 2.5

4 Hamming 53 3.13

5 Blackman 74 4.6
© National Instruments Corporation 2-413 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Wind_HPF

ows

Wind_HPF
int status = Wind_HPF (double fs, double fc, int n, double coef[],

int windType);

Purpose
Designs a digital highpass FIR linear phase filter using a windowing technique. Five wind
are available. Wind_HPF generates only the filter coefficients; it does not actually perform
data filtering.

Parameters
Input

Output

Return Value

Name Type Description

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

n integer Number of filter coefficients.

windType integer Window type.

Name Type Description

coef double-precision array Filter coefficients.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-414 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Wind_HPF

tion
e pass
fer to
Parameter Discussion
windType selects one of the five windows as shown in Table 2-54.

Using This Function
The attenuation value determines the approximate peak value of the sidelobes. Transi
bandwidth determines a frequency range over which the filter response changes from th
band to the stop band or from the stop band to the pass band. For more information, re
Discrete-Time Signal Processing by Oppenheim and Schafer.

Example
/* Design a 55-point highpass FIR linear phase filter that can achieve

at least a 44 dB attenuation and filter the incoming signal with the

designed filter. */

double x[256], coef[55], y[310], fs, fc;

int n, m, windType;

fs = 1000.0; /* sampling frequency */

fc = 200.0; /* desired cutoff frequency */

n = 55; /* filter length */

windType = 3; /* using Hanning window */

m = 256;

Wind_HPF (fs, fc, n, coef, windType);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */

Table 2-54. Valid windType Values

windType Window Attenuation (dB)
Transition

Bandwidth (fs/n)

1 Rectangular 21 0.9

2 Triangular 25 1.18

3 Hanning 44 2.5

4 Hamming 53 3.13

5 Blackman 74 4.6
© National Instruments Corporation 2-415 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — Wind_LPF

ows

Wind_LPF
int status = Wind_LPF (double fs, double fc, int n, double coef[],

int windType);

Purpose
Designs a digital lowpass FIR linear phase filter using a windowing technique. Five wind
are available. Wind_LPF generates only the filter coefficients; it does not actually perform
data filtering.

Parameters
Input

Output

Return Value

Name Type Description

fs double-precision Sampling frequency.

fc double-precision Cutoff frequency.

n integer Number of filter coefficients.

windType integer Window type.

Name Type Description

coef double-precision array Filter coefficients.

Name Type Description

status integer Refer to Appendix A for error codes.
LabWindows/CVI Advanced Analysis Library 2-416 © National Instruments Corporation

Chapter 2 Advanced Analysis Library Function Reference — Wind_LPF

tion
e pass
fer to
Parameter Discussion
windType selects one of the five windows as shown in Table 2-55.

Using This Function
The attenuation value determines the approximate peak value of the sidelobes. Transi
bandwidth determines a frequency range over which the filter response changes from th
band to the stop band or from the stop band to the pass band. For more information, re
Discrete-Time Signal Processing by Oppenheim and Schafer.

Example
/* Design a 55-point lowpass FIR linear phase filter that can achieve

at least a 44 dB attenuation and filter the incoming signal with the

designed filter. */

double x[256], coef[55], y[310], fs, fc;

int n, m, windType;

fs = 1000.0; /* sampling frequency */

fc = 200.0; /* desired cutoff frequency */

n = 55; /* filter length */

windType = 3 ; /* using Hanning window */

m = 256;

Wind_LPF (fs, fc, n, coef, windType);

Convolve (coef, n, x, m, y); /* Convolve the filter with the signal. */

Table 2-55. Valid windType Values

windType Window Attenuation (dB)
Transition

Bandwidth (fs/n)

1 Rectangular 21 0.9

2 Triangular 25 1.18

3 Hanning 44 2.5

4 Hamming 53 3.13

5 Blackman 74 4.6
© National Instruments Corporation 2-417 LabWindows/CVI Advanced Analysis Library

Chapter 2 Advanced Analysis Library Function Reference — XX_Dist
XX_Dist
int status = XX_Dist (double x, int n, double *p);

Purpose
Approximates the one-sided probability p:

where X is a random variable from the -distribution with n degrees of freedom

Parameters
Input

Output

Return Value

Example
double x, p;

int n;

x = -123.456;

n = 6;

XX_Dist (x, n, &p);

/* Now p = 0 because chi-square distributed variables are

non-negative. */

Name Type Description

x double-precision –∞ < x < ∞.

n integer Degrees of freedom.

Name Type Description

p double-precision Probability .

Name Type Description

status integer Refer to Appendix A for error codes.

p prob X x≤()=

χ2

0 p 1<≤()
LabWindows/CVI Advanced Analysis Library 2-418 © National Instruments Corporation

© National Instruments Corporation A-1 LabWindows/CVI Advance
A

n

t
r.

.

Error Codes

This appendix contains error codes the Advanced Analysis Library functions return. If a
error condition occurs during a call to any of the functions in the LabWindows Analysis
Library, the return value status contains the returned error code. This code is a value tha
specifies the type of error that occurred. Table A-2 lists the error codes in numeric orde
For your convenience, Table A-1 lists the error codes alphabetically by symbolic name

Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically

Symbolic Name Code Error Message

ArraySizeAnlysErr -20008 Specified conditions on the input arrays have
not been met.

AttenGTRippleAnlysErr -20028 Attenuation must be greater than the ripple
amplitude.

AttenGTZeroAnlysErr -20025 Attenuation must be greater than zero.

BalanceAnlysErr -20047 Data is unbalanced.

BandSpecAnlysErr -20023 Invalid band specification.

BaseGETopAnlysErr -20101 Base must be less than top.

BetaFuncAnlysErr -20057 Parameter to the beta function must meet the
condition .

CategoryAnlysErr -20055 Invalid number of categories or samples.

ColumnAnlysErr -20051 First column in the X matrix must be all ones.

CyclesAnlysErr -20012 Number of cycles must meet the condition
.

DataAnlysErr -20045 Total number of data points
must be equal to product of

.

DecFactAnlysErr -20022 Decimating factor must meet the condition
.

0 p 1< <

0 cycles samples≤<

levels each factor⁄() observations cell⁄()×

0 decimating factor samples≤<
d Analysis Library

Appendix A Error Codes

DelayWidthAnlysErr -20014 Delay and width must meet the condition
.

DimensionAnlysErr -20058 Invalid number of dimensions or dependent
variables.

DistinctAnlysErr -20049 x-values must be distinct.

DivByZeroAnlysErr -20060 Divide by zero.

DtGTZeroAnlysErr -20016 dt or dx must be greater than zero.

EqRplDesignAnlysErr -20031 Filter cannot be designed with the specified
input parameters.

EqSamplesAnlysErr -20002 Input sequences must be the same size.

EvenSizeAnlysErr -20033 Number of coefficients must be odd for
this filter.

FactorAnlysErr -20043 Level of factor is outside the allowable range.

FreedomAnlysErr -20052 Invalid degrees of freedom.

IndexLengthAnlysErr -20018 Index and length must meet the condition
.

IndexLTSamplesAnlysErr -20017 Index must meet the condition
.

InvSelectionAnlysErr -20061 Invalid selection.

IIRFilterInfoAnlysErr -20066 Information in the IIR filter structure
is invalid.

LevelsAnlysErr -20042 Number of levels is outside the
allowable range.

MaxIterAnlysErr -20062 Maximum iteration exceeded.

MixedSignAnlysErr -20036 Second array must be all positive or negative
and nonzero.

ModelAnlysErr -20048 Random Effect model was requested when the
Fixed Effect model is required.

NoAnlysErr 0 No error; the call was successful.

Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically (Continued)

Symbolic Name Code Error Message

0 delay width+() samples<≤

0 index length+() samples<≤

0 index samples<≤
LabWindows/CVI Advanced Analysis Library A-2 © National Instruments Corporation

Appendix A Error Codes

.

NyquistAnlysErr -20020 Cut-off frequency, fc, must meet the condition
.

ObservationsAnlysErr -20044 There must be at least one observation.

OddSizeAnlysErr -20034 Number of coefficients must be even for
this filter.

OrderGEZeroAnlysErr -20103 Order must be greater than or equal to zero.

OrderGTZeroAnlysErr -20021 Order must be greater than zero.

OutOfMemAnlysErr -20001 There is not enough memory left to perform
the specified routine.

PoleAnlysErr -20050 Interpolating function has a pole at the
requested value.

PolyAnlysErr -20063 Invalid polynomial.

PowerOfTwoAnlysErr -20009 Size of the input array must be a valid power
of two: .

ProbabilityAnlysErr -20053 Probability must meet the condition .

RippleGTZeroAnlysErr -20024 Ripple must be greater than zero.

SamplesGEThreeAnlysErr -20007 Number of samples must be greater than or
equal to three.

SamplesGETwoAnlysErr -20006 Number of samples must be greater than or
equal to two.

SamplesGEZeroAnlysErr -20004 Number of samples must be greater than or
equal to zero.

SamplesGTZeroAnlysErr -20003 Number of samples must be greater than zero

ShiftRangeAnlysErr -20102 Shifts must meet the condition
.

SingularMatrixAnlysErr -20041 Input matrix is singular. The system of
equations cannot be solved.

SizeGTOrderAnlysErr -20037 Array size must be greater than the order.

SquareMatrixAnlysErr -20040 Input matrix must be a square matrix.

Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically (Continued)

Symbolic Name Code Error Message

0 fc fs 2⁄()≤ ≤

size 2m=

0 p 1< <

shifts samples<
© National Instruments Corporation A-3 LabWindows/CVI Advanced Analysis Library

Appendix A Error Codes

.

TableAnlysErr -20056 Contingency table has a negative number.

UpperGELowerAnlysErr -20019 Upper value must be greater than or equal to
the lower value.

ZeroVectorAnlysErr -20065 Elements of the vector cannot be all zero.

Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically

Code Symbolic Name Error Message

0 NoAnlysErr No error; the call was successful.

-20001 OutOfMemAnlysErr There is not enough memory left to perform
the specified routine.

-20002 EqSamplesAnlysErr Input sequences must be the same size.

-20003 SamplesGTZeroAnlysErr Number of samples must be greater than zero

-20004 SamplesGEZeroAnlysErr Number of samples must be greater than or
equal to zero.

-20006 SamplesGETwoAnlysErr Number of samples must be greater than or
equal to two.

-20007 SamplesGEThreeAnlysErr Number of samples must be greater than or
equal to three.

-20008 ArraySizeAnlysErr Specified conditions on the input arrays have
not been met.

-20009 PowerOfTwoAnlysErr Size of the input array must be a valid power
of two: .

-20012 CyclesAnlysErr Number of cycles must meet the condition
.

-20014 DelayWidthAnlysErr Delay and width must meet the condition
.

-20016 DtGTZeroAnlysErr dt or dx must be greater than zero.

-20017 IndexLTSamplesAnlysErr Index must meet the condition:
.

Table A-1. Advanced Analysis Library Error Codes, Sorted Alphabetically (Continued)

Symbolic Name Code Error Message

size 2m=

0 cycles samples≤<

0 delay width+() samples<≤

0 index samples<≤
LabWindows/CVI Advanced Analysis Library A-4 © National Instruments Corporation

Appendix A Error Codes

-20018 IndexLengthAnlysErr Index and length must meet the condition
.

-20019 UpperGELowerAnlysErr Upper value must be greater than or equal to
the lower value.

-20020 NyquistAnlysErr Cut-off frequency, fc, must meet the
condition: .

-20021 OrderGTZeroAnlysErr Order must be greater than zero.

-20022 DecFactAnlysErr Decimating factor must meet the condition
.

-20023 BandSpecAnlysErr Invalid band specification.

-20024 RippleGTZeroAnlysErr Ripple must be greater than zero.

-20025 AttenGTZeroAnlysErr Attenuation must be greater than zero.

-20028 AttenGTRippleAnlysErr Attenuation must be greater than the ripple
amplitude.

-20031 EqRplDesignAnlysErr Filter cannot be designed with the specified
input parameters.

-20033 EvenSizeAnlysErr Number of coefficients must be odd for
this filter.

-20034 OddSizeAnlysErr Number of coefficients must be even for
this filter.

-20036 MixedSignAnlysErr Second array must be all positive or negative
and nonzero.

-20037 SizeGTOrderAnlysErr Array size must be greater than the order.

-20040 SquareMatrixAnlysErr Input matrix must be a square matrix.

-20041 SingularMatrixAnlysErr Input matrix is singular. The system of
equations cannot be solved.

-20042 LevelsAnlysErr Number of levels is outside the
allowable range.

-20043 FactorAnlysErr Level of factor is outside the allowable range.

-20044 ObservationsAnlysErr There must be at least one observation.

Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically (Continued)

Code Symbolic Name Error Message

0 index length+() samples<≤

0 fc fs 2⁄()≤ ≤

0 decimating factor samples≤<
© National Instruments Corporation A-5 LabWindows/CVI Advanced Analysis Library

Appendix A Error Codes

-20045 DataAnlysErr Total number of data points
must be equal to product of

.

-20047 BalanceAnlysErr Data is unbalanced.

-20048 ModelAnlysErr Random Effect model was requested when
the Fixed Effect model is required.

-20049 DistinctAnlysErr x-values must be distinct.

-20050 PoleAnlysErr Interpolating function has a pole at the
requested value.

-20051 ColumnAnlysErr First column in the X matrix must be all ones.

-20052 FreedomAnlysErr Invalid degrees of freedom.

-20053 ProbabilityAnlysErr Probability must meet the condition
.

-20055 CategoryAnlysErr Invalid number of categories or samples.

-20056 TableAnlysErr Contingency table has a negative number.

-20057 BetaFuncAnlysErr Parameter to the beta function must meet the
condition .

-20058 DimensionAnlysErr Invalid number of dimensions or dependent
variables.

-20060 DivByZeroAnlysErr Divide by zero.

-20061 InvSelectionAnlysErr Invalid selection.

-20062 MaxIterAnlysErr Maximum iteration exceeded.

-20063 PolyAnlysErr Invalid polynomial.

-20065 ZeroVectorAnlysErr Elements of the vector cannot be all zero.

-20066 IIRFilterInfoAnlysErr Information in the IIR filter structure
is invalid.

-20101 BaseGETopAnlysErr Base must be less than top.

Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically (Continued)

Code Symbolic Name Error Message

levels each factor⁄() observations cell⁄()×

0 p 1< <

0 p 1< <
LabWindows/CVI Advanced Analysis Library A-6 © National Instruments Corporation

Appendix A Error Codes
-20102 ShiftRangeAnlysErr Shifts must meet the condition
.

-20103 OrderGEZeroAnlysErr Order must be greater than or equal to zero.

Table A-2. Advanced Analysis Library Error Codes, Sorted Numerically (Continued)

Code Symbolic Name Error Message

shifts samples<
© National Instruments Corporation A-7 LabWindows/CVI Advanced Analysis Library

© National Instruments Corporation B-1 LabWindows/CVI Advance
B

ry

 and
 your

 quickly
P site,
try the
r
 staffed

 files
ownload
 to use
u can

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessa
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form
the configuration form, if your manual contains one, about your system configuration to answer
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
provide the information you need. Our electronic services include a bulletin board service, an FT
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first
electronic support systems. If the information available on these systems does not answer you
questions, we offer fax and telephone support through our technical support centers, which are
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
and documents to answer most common customer questions. From these sites, you can also d
the latest instrument drivers, updates, and example programs. For recorded instructions on how
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. Yo
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.
d Analysis Library

 wide

l at the
 we can

al
act
Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
range of technical information. You can access Fax-on-Demand from a touch-tone telephone
at 512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mai
Internet address listed below. Remember to include your name, address, and phone number so
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technic
support number for your country. If there is no National Instruments office in your country, cont
the source from which you purchased your software to obtain support.

Country Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678
LabWindows/CVI Advanced Analysis Library B-2 © National Instruments Corporation

nd use
orm

,

__

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, a
the completed copy of this form as a reference for your current configuration. Completing this f
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) ______________________________________

Computer brand____________ Model ___________________Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter ________________________

Mouse ___yes ___no Other adapters installed ___________________________________

Hard disk capacity _____MB Brand__

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: _______________________________________

h item.
, and
ore
your

LabWindows/CVI Hardware and Software
Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of eac
Complete a new copy of this form each time you revise your software or hardware configuration
use this form as a reference for your current configuration. Completing this form accurately bef
contacting National Instruments for technical support helps our applications engineers answer
questions more efficiently.

National Instruments Products
Hardware revision ___

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware __

Programming choice ___

National Instruments software __

Other boards in system __

Base I/O address of other boards ___

DMA channels of other boards ___

Interrupt level of other boards __

Other Products
Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards ___

DMA channels of other boards ___

Interrupt level of other boards __

ducts.

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our pro
This information helps us provide quality products to meet your needs.

Title: LabWindows/CVI Advanced Analysis Library Reference Manual

Edition Date: February 1998

Part Number: 320686D-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) ___________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

Glossary
Prefix Meaning Value

p- pico- 10–12

n- nano- 10–9

µ- micro- 10–6

m- milli- 10–3

k- kilo- 103

M- mega- 106

Numbers/Symbols

1D one-dimensional.

2D two-dimensional.

A

ANOVA analysis of variance.

C

cm centimeters.

D

DFT Discrete Fourier Transform.

DSP digital signal processing.
© National Instruments Corporation G-1 LabWindows/CVI Advanced Analysis Library

Glossary

 in

 a
ng
 all
F

FFT Fast Fourier Transform.

FHT Fast Hartley Transform.

FIR finite impulse response.

function panel A user interface to the LabWindows/CVI libraries in which you can
interactively execute library functions and generate code for inclusion
a program.

function tree The hierarchical structure in which the functions in a library or an
instrument driver are grouped. The function tree simplifies access to
library or instrument driver by presenting functions organized accordi
to the operation they perform, as opposed to a single linear listing of
available functions.

H

Hz hertz.

I

IDFT inverse Discrete Fourier Transform.

IIR infinite impulse response.

M

mse mean squared error.

R

rms root-mean-square.
LabWindows/CVI Advanced Analysis Library G-2 © National Instruments Corporation

Glossary

at lie
be

tered
S

sidelobes The lobes that have lower peak amplitude than the mainlobe and th
on either side of the mainlobe in the frequency spectrum. The mainlo
is the lobe that has the highest peak amplitude and that is usually cen
around zero frequency in the frequency spectrum.

V

V volts.
© National Instruments Corporation G-3 LabWindows/CVI Advanced Analysis Library

Index
Numbers
1D array functions. See one-dimensional array

operation functions.
1D complex operation functions. See

one-dimensional complex operation functions.
2D array functions. See two-dimensional array

operation functions.

A
Abs1D function, 2-1
ACDCEstimator function, 2-3
Add1D function, 2-4
Add2D function, 2-5
Advanced Analysis Library functions

class and subclass descriptions, 1-8 to 1-10
error codes

alphabetical list, A-1 to A-4
numeric list, A-4 to A-7

function panels
array operation functions, 1-2 to 1-3
complex operation functions, 1-3 to 1-4
curve fitting functions, 1-7
function tree (table), 1-1 to 1-8
hints for using, 1-10
interpolation functions, 1-7
measurement functions, 1-6
signal generation functions, 1-2
signal processing functions, 1-4 to 1-6
statistics functions, 1-6
vector and matrix algebra functions,

1-7 to 1-8
function reference

Abs1D, 2-1
ACDCEstimator, 2-3
Add1D, 2-4
Add2D, 2-5

AllocIIRFilterPtr, 2-6 to 2-7
AmpPhaseSpectrum, 2-8 to 2-9
ANOVA1Way, 2-10 to 2-15
ANOVA2Way, 2-16 to 2-26
ANOVA3Way, 2-27 to 2-41
ArbitraryWave, 2-42 to 2-43
AutoPowerSpectrum, 2-44 to 2-45
BackSub, 2-46 to 2-47
Bessel_CascadeCoef, 2-48 to 2-49
Bessel_Coef, 2-50 to 2-51
BkmanWin, 2-52
BlkHarrisWin, 2-53
Bw_BPF, 2-54 to 2-55
Bw_BSF, 2-56 to 2-57
Bw_CascadeCoef, 2-58 to 2-59
Bw_Coef, 2-60 to 2-61
Bw_HPF, 2-62 to 2-63
Bw_LPF, 2-64 to 2-65
CascadeToDirectCoef, 2-66 to 2-67
Ch_BPF, 2-68 to 2-69
Ch_BSF, 2-70 to 2-71
Ch_CascadeCoef, 2-72 to 2-73
Ch_Coef, 2-74 to 2-75
Ch_HPF, 2-76 to 2-77
Ch_LPF, 2-78 to 2-79
CheckPosDef, 2-80
Chirp, 2-81
Cholesky, 2-82 to 2-83
Clear1D, 2-84
Clip, 2-85
ConditionNumber, 2-86 to 2-87
Contingency_Table, 2-88 to 2-91
Convolve, 2-92 to 2-93
Copy1D, 2-94
Correlate, 2-95 to 2-96
CosTaperedWin, 2-97
CrossPowerSpectrum, 2-98 to 2-99
© National Instruments Corporation I-1 LabWindows/CVI Advanced Analysis Library

Index
CrossSpectrum, 2-100 to 2-101
CxAdd, 2-102
CxAdd1D, 2-103
CxCheckPosDef, 2-104
CxCholesky, 2-105 to 2-106
CxConditionNumber, 2-107 to 2-108
CxDeterminant, 2-109 to 2-110
CxDiv, 2-111
CxDiv1D, 2-112
CxDotProduct, 2-113
CxEigenValueVector, 2-114 to 2-115
CxExp, 2-116
CxGenInvMatrix, 2-117 to 2-118
CxGenLinEqs, 2-119 to 2-120
CxLinEv1D, 2-121 to 2-122
CxLn, 2-123
CxLog, 2-124
CxLU, 2-125 to 2-126
CxMatrixMul, 2-127 to 2-128
CxMatrixNorm, 2-129 to 2-130
CxMatrixRank, 2-131 to 2-132
CxMul, 2-133
CxMul1D, 2-134
CxOuterProduct, 2-135 to 2-136
CxPolyRoots, 2-137 to 2-138
CxPow, 2-139
CxPseudoInverse, 2-140 to 2-141
CxQR, 2-142 to 2-143
CxRecip, 2-144
CxSpecialMatrix, 2-145 to 2-147
CxSqrt, 2-148
CxSub, 2-149
CxSub1D, 2-150
CxSVD, 2-151 to 2-152
CxSVDS, 2-153
CxTrace, 2-154
CxTranspose, 2-155
Decimate, 2-156
Deconvolve, 2-157
Determinant, 2-158

Difference, 2-159 to 2-160
Div1D, 2-161
Div2D, 2-162
DotProduct, 2-163
Elp_BPF, 2-164 to 2-165
Elp_BSF, 2-166 to 2-167
Elp_CascadeCoef, 2-168 to 2-169
Elp_Coef, 2-170 to 2-171
Elp_HPF, 2-172 to 2-173
Elp_LPF, 2-174 to 2-175
Equi_Ripple, 2-176 to 2-179
EquiRpl_BPF, 2-180 to 2-181
EquiRpl_BSF, 2-182 to 2-183
EquiRpl_HPF, 2-184 to 2-185
EquiRpl_LPF, 2-186 to 2-187
ExBkmanWin, 2-188
ExpFit, 2-189 to 2-190
ExpWin, 2-191
F_Dist, 2-192
FFT, 2-193 to 2-194
FHT, 2-195 to 2-196
FIR_Coef, 2-197 to 2-198
FlatTopWin, 2-199
ForceWin, 2-200
ForwSub, 2-201 to 2-202
FreeAnalysisMem, 2-203
FreeIIRFilterPtr, 2-204
GaussNoise, 2-205
GenCosWin, 2-206
GenDeterminant, 2-207 to 2-208
GenEigenValueVector,

2-209 to 2-210
GenInvMatrix, 2-211 to 2-212
GenLinEqs, 2-213 to 2-214
GenLSFit, 2-215 to 2-223
GenLSFitCoef, 2-224 to 2-226
GetAnalysisErrorString, 2-227
HamWin, 2-228
HanWin, 2-229
HarmonicAnalyzer, 2-230 to 2-231
Histogram, 2-232 to 2-233
LabWindows/CVI Advanced Analysis Library I-2 © National Instruments Corporation

Index
IIRCascadeFiltering, 2-234 to 2-235
IIRFiltering, 2-236 to 2-237
Impulse, 2-238
ImpulseResponse, 2-239 to 2-240
Integrate, 2-241 to 2-242
InvCh_BPF, 2-243 to 2-244
InvCh_BSF, 2-245 to 2-246
InvCh_CascadeCoef, 2-247 to 2-248
InvCh_Coef, 2-249 to 2-250
InvCh_HFP, 2-251 to 2-252
InvCh_LPF, 2-253 to 2-254
InvF_Dist, 2-255 to 2-256
InvFFT, 2-257 to 2-258
InvFHT, 2-259 to 2-260
InvMatrix, 2-261
InvN_Dist, 2-262
InvT_Dist, 2-263
InvXX_Dist, 2-264
Ksr_BPF, 2-265 to 2-266
Ksr_BSF, 2-267 to 2-268
Ksr_HPF, 2-269 to 2-270
Ksr_LPF, 2-271 to 2-272
KsrWin, 2-273 to 2-274
LinEqs, 2-275
LinEv1D, 2-276
LinEv2D, 2-277
LinFit, 2-278 to 2-279
LU, 2-280 to 2-281
MatrixMul, 2-282 to 2-283
MatrixNorm, 2-284 to 2-285
MatrixRank, 2-286 to 2-287
MaxMin1D, 2-288
MaxMin2D, 2-289 to 2-290
Mean, 2-291
Median, 2-292
Mode, 2-293
Moment, 2-294 to 2-295
Mul1D, 2-296
Mul2D, 2-297
N-Dist, 2-298

Neg1D, 2-299
NetworkFunctions, 2-300 to 2-302
NonLinearFit, 2-303 to 2-304
NonLinearFitWith MaxIters, 2-305
Normal1D, 2-307 to 2-308
Normal2D, 2-309 to 2-310
NumericIntegration, 2-311 to 2-313
OuterProduct, 2-314
PeakDetector, 2-315 to 2-317
PolyEv1D, 2-318 to 2-319
PolyEv2D, 2-320 to 2-321
PolyFit, 2-322 to 2-323
PolyInterp, 2-324 to 2-325
PowerFrequencyEstimate,

2-326 to 2-328
Prod1D, 2-329
PseudoInverse, 2-330 to 2-331
Pulse, 2-332 to 2-333
PulseParam, 2-234 to 2-336
QR, 2-337 to 2-338
QScale1D, 2-339
QScale2D, 2-340
Ramp, 2-341 to 2-342
RatInterp, 2-343 to 2-344
ReFFT, 2-345
ReInvFFT, 2-346
ResetIIRFilter, 2-347 to 2-348
Reverse, 2-349
RMS, 2-350
SawtoothWave, 2-351 to 2-352
Scale1D, 2-353 to 2-354
Scale2D, 2-355 to 2-356
ScaledWindow, 2-357 to 2-358
Set1D, 2-359
Shift, 2-360 to 2-361
Sinc, 2-362
SinePattern, 2-363 to 2-364
SineWave, 2-365 to 2-366
Sort, 2-367
SpecialMatrix, 2-368 to 2-370
Spectrum, 2-371
© National Instruments Corporation I-3 LabWindows/CVI Advanced Analysis Library

Index

0

SpectrumUnitConversion,
2-372 to 2-375

SpInterp, 2-376 to 2-377
Spline, 2-378 to 2-379
SquareWave, 2-380 to 2-381
StdDev, 2-382
Sub1D, 2-383
Sub2D, 2-384
Subset1D, 2-385
Sum1D, 2-386
Sum2D, 2-387
SVD, 2-388 to 2-389
SVDS, 2-390
SymEigenValueVector,

2-391 to 2-392
T_Dist, 2-393
ToPolar, 2-394
ToPolar1D, 2-395
ToRect, 2-396
ToRect1D, 2-397
Trace, 2-398
TransferFunction, 2-399
Transpose, 2-401
Triangle, 2-402
TriangleWave, 2-403 to 2-404
TriWin, 2-405
Uniform, 2-406
UnWrap1D, 2-407
Variance, 2-408
WhiteNoise, 2-409
Wind_BPF, 2-410 to 2-411
Wind_BSF, 2-412 to 2-413
Wind_HPF, 2-414 to 2-415
Wind_LPF, 2-416 to 2-417
XX_Dist, 2-418

AllocIIRFilterPtr function, 2-6 to 2-7
AmpPhaseSpectrum function, 2-8 to 2-9
analysis of variance functions

ANOVA1Way, 2-10 to 2-15
assumptions, 2-12
examples, 2-14 to 2-15

factors and levels, 2-11
formulas, 2-13
general method of using, 2-11
hypothesis, 2-12
parameters, 2-10
purpose, 2-10
return value, 2-11
statistical method, 2-12

ANOVA2Way, 2-16 to 2-26
assumptions, 2-20
examples, 2-24 to 2-26
factors, levels, and cells, 2-18
formulas, 2-21 to 2-23
general method of using, 2-19
hypotheses, 2-20 to 2-21
parameters, 2-16 to 2-17
purpose, 2-16
random and fixed effects,

2-18 to 2-19
return value, 2-17
statistical model, 2-19 to 2-20

ANOVA3Way, 2-27 to 2-41
assumptions, 2-31
examples, 2-37 to 2-41
factors, levels, and cells, 2-29 to 2-3
formulas, 2-33 to 2-37
general method of using, 2-30
hypotheses, 2-32 to 2-33
parameters, 2-27 to 2-29
purpose, 2-27
random and fixed effects, 2-30
return value, 2-29
statistical model, 2-31

definition, 1-9
function tree, 1-6

ArbitraryWave function, 2-42 to 2-43
array analysis, performing in place, 1-10
array operation functions

Abs1D, 2-1
Add1D, 2-4
Add2D, 2-5
LabWindows/CVI Advanced Analysis Library I-4 © National Instruments Corporation

Index
Clear1D, 2-84
Copy1D, 2-94
definition, 1-8
Div1D, 2-161
Div2D, 2-162
function tree, 1-2 to 1-3
LinEv1D, 2-276
LinEv2D, 2-277
MaxMin1D, 2-288
MaxMin2D, 2-289 to 2-290
Mul1D, 2-296
Mul2D, 2-297
Neg1D, 2-299
PolyEv1D, 2-318 to 2-319
PolyEv2D, 2-320 to 2-321
Prod1D, 2-329
QScale1D, 2-339
QScale2D, 2-340
Scale1D, 2-353 to 2-354
Scale2D, 2-355 to 2-356
Set1D, 2-359
Sub1D, 2-383
Sub2D, 2-384
Subset1D, 2-385
Sum1D, 2-386
Sum2D, 2-387
UnWrap1D, 2-407

AutoPowerSpectrum function, 2-44 to 2-45

B
BackSub function, 2-46 to 2-47
basic statistics functions

definition, 1-9
function tree, 1-6
Histogram, 2-232 to 2-233
Mean, 2-291
Median, 2-292
Mode, 2-293
Moment, 2-294 to 2-295
RMS, 2-350

StdDev, 2-382
Variance, 2-408

Bessel_CascadeCoef function, 2-48 to 2-49
Bessel_Coef function, 2-50 to 2-51
BkmanWin function, 2-52
BlkHarrisWin function, 2-53
Bw_BPF function, 2-54 to 2-55
Bw_BSF function, 2-56 to 2-57
Bw_CascadeCoef function, 2-58 to 2-59
Bw_Coef function, 2-60 to 2-61
Bw_HPF function, 2-62 to 2-63
Bw_LPF function, 2-64 to 2-65

C
CascadeToDirectCoef function, 2-66 to 2-67
Ch_BPF function, 2-68 to 2-69
Ch_BSF function, 2-70 to 2-71
Ch_CascadeCoef function, 2-72 to 2-73
Ch_Coef function, 2-74 to 2-75
Ch_HPF function, 2-76 to 2-77
Ch_LPF function, 2-78 to 2-79
CheckPosDef function, 2-80
Chirp function, 2-81
chi-square tests, 2-89 to 2-90
Cholesky function, 2-82 to 2-83
Clear1D function, 2-84
Clip function, 2-85
complex matrix functions. See vector and

matrix algebra functions.
complex operation functions

CxAdd, 2-102
CxAdd1D, 2-103
CxDiv, 2-111
CxDiv1D, 2-112
CxExp, 2-116
CxLinEv1D, 2-121 to 2-122
CxLn, 2-123
CxLog, 2-124
CxMul, 2-133
CxMul1D, 2-134
© National Instruments Corporation I-5 LabWindows/CVI Advanced Analysis Library

Index
CxPow, 2-139
CxRecip, 2-144
CxSqrt, 2-148
CxSub, 2-149
CxSub1D, 2-150
definition, 1-9
function tree, 1-3 to 1-4
ToPolar, 2-394
ToPolar1D, 2-395
ToRect, 2-396
ToRect1D, 2-397

ConditionNumber function, 2-86 to 2-87
Contingency_Table function, 2-88 to 2-91

chi-square test of homogeneity, 2-89
chi-square test of independence, 2-90
example, 2-91
formulas, 2-91
hypothesis testing, 2-90
parameters, 2-88
purpose, 2-88
return value, 2-89

Convolve function, 2-92 to 2-93
Copy1D function, 2-94
Correlate function, 2-95 to 2-96
CosTaperedWin function, 2-97
CrossPowerSpectrum function, 2-98 to 2-99
CrossSpectrum function, 2-100 to 2-101
curve fitting, 1-21
curve fitting functions

definition, 1-10
ExpFit, 2-189 to 2-190
function tree, 1-7
GenLSFit, 2-215 to 2-223
GenLSFitCoef, 2-224 to 2-226
LinFit, 2-278 to 2-279
NonLinearFit, 2-303 to 2-304
PolyFit, 2-322 to 2-323

customer communication, xvi, B-1 to B-2
CxAdd function, 2-102
CxAdd1D function, 2-103

CxCheckPosDef function, 2-104
CxCholesky function, 2-105 to 2-106
CxConditionNumber function, 2-107 to 2-108
CxDeterminant function, 2-109 to 2-110
CxDiv function, 2-111
CxDiv1D function, 2-112
CxDotProduct function, 2-113
CxEigenValueVector function, 2-114 to 2-115
CxExp function, 2-116
CxGenInvMatrix function, 2-117 to 2-118
CxGenLinEqs function, 2-119 to 2-120
CxLinEv1D function, 2-121 to 2-122
CxLn function, 2-123
CxLog function, 2-124
CxLU function, 2-125 to 2-126
CxMatrixMul function, 2-127 to 2-128
CxMatrixNorm function, 2-129 to 2-130
CxMatrixRank function, 2-131 to 2-132
CxMul function, 2-133
CxMul1D function, 2-134
CxOuterProduct function, 2-135 to 2-136
CxPolyRoots function, 2-137 to 2-138
CxPow function, 2-139
CxPseudoInverse function, 2-140 to 2-141
CxQR function, 2-142 to 2-143
CxRecip function, 2-144
CxSpecialMatrix function, 2-145 to 2-147
CxSqrt function, 2-148
CxSub function, 2-149
CxSub1D function, 2-150
CxSVD function, 2-151 to 2-152
CxSVDS function, 2-153
CxTrace function, 2-154
CxTranspose function, 2-155

D
Decimate function, 2-156
Deconvolve function, 2-157
Determinant function, 2-158
Difference function, 2-159 to 2-160
LabWindows/CVI Advanced Analysis Library I-6 © National Instruments Corporation

Index
digital filters. See FIR filters; IIR filters.
Discrete Fourier Transform (DFT), 1-11
Div1D function, 2-161
Div2D function, 2-162
documentation

conventions used in manual, xiii-xiv
organization of manual, xiii
related documentation, xiv-xvi

DotProduct function, 2-163

E
electronic support services, B-1 to B-2
Elp_BPF function, 2-164 to 2-165
Elp_BSF function, 2-166 to 2-167
Elp_CascadeCoef function, 2-168 to 2-169
Elp_Coef function, 2-170 to 2-171
Elp_HPF function, 2-172 to 2-173
Elp_LPF function, 2-174 to 2-175
e-mail support, B-2
Equi_Ripple function

description, 2-176 to 2-177
designing FIR filters, 1-16
examples, 2-177 to 2-179
problems with convergence

(caution), 1-17
EquiRpl_BPF function, 2-180 to 2-181
EquiRpl_BSF function, 2-182 to 2-183
EquiRpl_HPF function, 2-184 to 2-185
EquiRpl_LPF function, 2-186 to 2-187
error codes

alphabetical list, A-1 to A-4
numeric list, A-4 to A-7

errors
converting error number

with GetAnalysisErrorString
function, 2-227

reporting analysis errors, 1-11
ExBkmanWin function, 2-188
ExpFit function, 2-189 to 2-190
ExpWin function, 2-191

F
Fast Fourier Transform (FFT), 1-11 to 1-12.

See also frequency domain functions.
fax and telephone support numbers, B-2
Fax-on-Demand support, B-2
F_Dist function, 2-192
FFT function, 2-193 to 2-194
FHT function, 2-195 to 2-196
finite impulse response functions. See

FIR digital filter functions; FIR filters.
FIR digital filter functions

definition, 1-9
FIR_Coef, 2-197 to 2-198
function tree, 1-5
Ksr_BPF, 2-265 to 2-266
Ksr_BSF, 2-267 to 2-268
Ksr_HPF, 2-269 to 2-270
Ksr_LPF, 2-271 to 2-272
Wind_BPF, 2-410 to 2-411
Wind_BSF, 2-412 to 2-413
Wind_HPF, 2-414 to 2-415
Wind_LPF, 2-416 to 2-417

FIR filters
compared with IIR filters, 1-15
definition, 1-15
designing, 1-16 to 1-17

FIR_Coef function, 2-197 to 2-198
FlatTopWin function, 2-199
ForceWin function, 2-200
ForwSub function, 2-201 to 2-202
Fourier Transform integral, 1-11
FreeAnalysisMem function, 2-203
FreeIIRFilterPtr function, 2-204
frequency domain functions

conventions and restrictions related to
Fast Fourier Transform, 1-12

CrossSpectrum, 2-100 to 2-101
definition, 1-9
FFT, 2-193 to 2-194
FHT, 2-195 to 2-196
© National Instruments Corporation I-7 LabWindows/CVI Advanced Analysis Library

Index
function tree, 1-4
InvFFT, 2-257 to 2-258
InvFHT, 2-259 to 2-260
notation for describing Fast Fourier

Transform operations, 1-12
ReFFT, 2-345
ReInvFFT, 2-346
Spectrum, 2-371

FTP support, B-1
function panels. See under Advanced Analysis

Library functions.

G
GaussNoise function, 2-205
GenCosWin function, 2-206
GenDeterminant function, 2-207 to 2-208
GenEigenValueVector function,

2-209 to 2-210
generated code stored in Interactive

window, 1-10
GenInvMatrix function, 2-211 to 2-212
GenLinEqs function, 2-213 to 2-214
GenLSFit function, 2-215 to 2-223

example, 2-221 to 2-223
parameters, 2-215 to 2-216
purpose, 2-215
return value, 2-216
using the function, 2-217 to 2-220

GenLSFitCoef function, 2-224 to 2-226
GetAnalysisErrorString function, 2-227

H
HamWin function, 2-228
HanWin function, 2-229
HarmonicAnalyzer function, 2-230 to 2-231
Histogram function, 2-232 to 2-233

I
IEW. See Interactive Execution window.
IIR digital filter functions

AllocIIRFilterPtr, 2-6 to 2-7
Bessel_CascadeCoef, 2-48 to 2-49
Bessel_Coef, 2-50 to 2-51
Bw_BPF, 2-54 to 2-55
Bw_BSF, 2-56 to 2-57
Bw_CascadeCoef, 2-58 to 2-59
Bw_Coef, 2-60 to 2-61
Bw_HPF, 2-62 to 2-63
Bw_LPF, 2-64 to 2-65
CascadeToDirectCoef, 2-66 to 2-67
Ch_BPF, 2-68 to 2-69
Ch_BSF, 2-70 to 2-71
Ch_CascadeCoef, 2-72 to 2-73
Ch_Coef, 2-74 to 2-75
Ch_HPF, 2-76 to 2-77
Ch_LPF, 2-78 to 2-79
definition, 1-9
Elp_BPF, 2-164 to 2-165
Elp_BSF, 2-166 to 2-167
Elp_CascadeCoef, 2-168 to 2-169
Elp_Coef, 2-170 to 2-171
Elp_HPF, 2-172 to 2-173
Elp_LPF, 2-174 to 2-175
Equi_Ripple, 2-176 to 2-179
EquiRpl_BPF, 2-180 to 2-181
EquiRpl_BSF, 2-182 to 2-183
EquiRpl_HPF, 2-184 to 2-185
EquiRpl_LPF, 2-186 to 2-187
FreeIIRFilterPtr, 2-204
function tree, 1-4 to 1-5
IIRCascadeFiltering, 2-234 to 2-235
IIRFiltering, 2-236 to 2-237
InvCh_BPF, 2-243 to 2-244
InvCh_BSF, 2-245 to 2-246
InvCh_CascadeCoef, 2-247 to 2-248
InvCh_Coef, 2-249 to 2-250
InvCh_HFP, 2-251 to 2-252
LabWindows/CVI Advanced Analysis Library I-8 © National Instruments Corporation

Index

8

InvCh_LPF, 2-253 to 2-254
ResetIIRFilter, 2-347 to 2-348

IIR filters, 1-17 to 1-19
cascaded filter stages, 1-18
compared with FIR filters, 1-15
direct form, 1-17
fourth order, 1-18 to 1-19
mathematical form, 1-17
second order, 1-18
types, 1-19

IIRCascadeFiltering function, 2-234 to 2-235
IIRFiltering function, 2-236 to 2-237
Impulse function, 2-238
ImpulseResponse function, 2-239 to 2-240
infinite impulse response functions. See

IIR digital filter functions; IIR filters.
Integrate function, 2-241 to 2-242
Interactive Execution window, 1-10
interpolation functions

definition, 1-10
function tree, 1-7
PolyInterp, 2-324 to 2-325
RatInterp, 2-343 to 2-344
SpInterp, 2-376 to 2-377
Spline, 2-378 to 2-379

InvCh_BPF function, 2-243 to 2-244
InvCh_BSF function, 2-245 to 2-246
InvCh_CascadeCoef function, 2-247 to 2-248
InvCh_Coef function, 2-249 to 2-250
InvCh_HFP function, 2-251 to 2-252
InvCh_LPF function, 2-253 to 2-254
InvF_Dist function, 2-255 to 2-256
InvFFT function, 2-257 to 2-258
InvFHT function, 2-259 to 2-260
InvMatrix function, 2-261
InvN_Dist function, 2-262
InvT_Dist function, 2-263
InvXX_Dist function, 2-264

K
Ksr_BPF function, 2-265 to 2-266
Ksr_BSF function, 2-267 to 2-268
Ksr_HPF function, 2-269 to 2-270
Ksr_LPF function, 2-271 to 2-272
KsrWin function, 2-273 to 2-274

L
LinEqs function, 2-275
LinEv1D function, 2-276
LinEv2D function, 2-277
LinFit function, 2-278 to 2-279
LU function, 2-280 to 2-281

M
manual. See documentation.
matrix algebra functions. See vector and

matrix algebra functions.
MatrixMul function, 2-282 to 2-283
MatrixNorm function, 2-284 to 2-285
MatrixRank function, 2-286 to 2-287
MaxMin1D function, 2-288
MaxMin2D function, 2-289 to 2-290
Mean function, 2-291
measurement functions

ACDCEstimator, 2-3
AmpPhaseSpectrum, 2-8 to 2-9
AutoPowerSpectrum, 2-44 to 2-45
characteristics, 1-20
CrossPowerSpectrum, 2-98 to 2-99
definition, 1-9
function tree, 1-6
HarmonicAnalyzer, 2-230 to 2-231
ImpulseResponse, 2-239 to 2-240
NetworkFunctions, 2-300 to 2-302
PowerFrequencyEstimate, 2-326 to 2-32
purpose and use, 1-19 to 1-20
ScaledWindow, 2-357 to 2-358
© National Instruments Corporation I-9 LabWindows/CVI Advanced Analysis Library

Index

s

SpectrumUnitConversion, 2-372 to 2-375
TransferFunction, 2-399

Median function, 2-292
Mode function, 2-293
Moment function, 2-294 to 2-295
Mul1D function, 2-296
Mul2D function, 2-297

N
N-Dist function, 2-298
Neg1D function, 2-299
NetworkFunctions function, 2-300 to 2-302
NonLinearFit function, 2-303 to 2-304
NonLinearFitWith MaxIters function, 2-305
nonparametric statistics function

Contingency_Table, 2-88 to 2-91
definition, 1-9
function tree, 1-6

Normal1D function, 2-307 to 2-308
Normal2D function, 2-309 to 2-310
NumericIntegration function, 2-311 to 2-313

O
one-dimensional array operation functions

Abs1D, 2-1
Add1D, 2-4
definition, 1-8
Div1D, 2-161
function tree, 1-2 to 1-3
LinEv1D, 2-276
MaxMin1D, 2-288
Mul1D, 2-296
Neg1D, 2-299
PolyEv1D, 2-318 to 2-319
Prod1D, 2-329
QScale1D, 2-339
Scale1D, 2-353 to 2-354
Sub1D, 2-383
Subset1D, 2-385

Sum1D, 2-386
Sum2D, 2-387

one-dimensional complex operation function
CxAdd1D, 2-103
CxDiv1D, 2-112
CxLinEv1D, 2-121 to 2-122
CxMul1D, 2-134
CxSub1D, 2-150
definition, 1-9
function tree, 1-4
ToPolar1D, 2-395
ToRect1D, 2-397

OuterProduct function, 2-314

P
PeakDetector function, 2-315 to 2-317
performance considerations, analysis

functions, 1-10
PolyEv1D function, 2-318 to 2-319
PolyEv2D function, 2-320 to 2-321
PolyFit function, 2-322 to 2-323
PolyInterp function, 2-324 to 2-325
PowerFrequencyEstimate function,

2-326 to 2-328
probability distribution functions

definition, 1-9
F_Dist, 2-192
function tree, 1-6
InvF_Dist, 2-255 to 2-256
InvN_Dist, 2-262
InvT_Dist, 2-263
InvXX_Dist, 2-264
N-Dist, 2-298
T_Dist, 2-393
XX_Dist, 2-418

Prod1D function, 2-329
PseudoInverse function, 2-330 to 2-331
Pulse function, 2-332 to 2-333
PulseParam function, 2-234 to 2-336
LabWindows/CVI Advanced Analysis Library I-10 © National Instruments Corporation

Index
Q
QR function, 2-337 to 2-338
QScale1D function, 2-339
QScale2D function, 2-340

R
Radix-4 and Radix-8 algorithms, 1-12
Ramp function, 2-341 to 2-342
RatInterp function, 2-343 to 2-344
real matrix functions. See vector and matrix

algebra functions.
ReFFT function, 2-345
ReInvFFT function, 2-346
ResetIIRFilter function, 2-347 to 2-348
Reverse function, 2-349
RMS function, 2-350

S
SawtoothWave function, 2-351 to 2-352
Scale1D function, 2-353 to 2-354
Scale2D function, 2-355 to 2-356
ScaledWindow function, 2-357 to 2-358
Set1D function, 2-359
Shift function, 2-360 to 2-361
signal generation functions

ArbitraryWave, 2-42 to 2-43
Chirp, 2-81
definition, 1-9
function tree, 1-2
GaussNoise, 2-205
Impulse, 2-238
Pulse, 2-332 to 2-333
Ramp, 2-341 to 2-342
SawtoothWave, 2-351 to 2-352
Sinc, 2-362
SinePattern, 2-363 to 2-364
SineWave, 2-365 to 2-366
SquareWave, 2-380 to 2-381

Triangle, 2-402
TriangleWave, 2-403 to 2-404
Uniform, 2-406
WhiteNoise, 2-409

signal processing functions. See FIR
digital filter functions; frequency domain
functions; IIR digital filter functions;
time domain functions; windows functions.

Sinc function, 2-362
SinePattern function, 2-363 to 2-364
SineWave function, 2-365 to 2-366
Sort function, 2-367
source file code stored in Interactive

window, 1-10
SpecialMatrix function, 2-368 to 2-370
Spectrum function, 2-371
SpectrumUnitConversion function,

2-372 to 2-375
SpInterp function, 2-376 to 2-377
Spline function, 2-378 to 2-379
Split-Radix algorithm, 1-12
SquareWave function, 2-380 to 2-381
statistics functions

ANOVA1Way, 2-10 to 2-15
ANOVA2Way, 2-16 to 2-26
ANOVA3Way, 2-27 to 2-41
Contingency_Table, 2-88 to 2-91
definition, 1-9
F_Dist, 2-192
function tree, 1-6
GenLSFit, 2-215 to 2-223
Histogram, 2-232 to 2-233
InvF_Dist, 2-255 to 2-256
InvN_Dist, 2-262
InvT_Dist, 2-263
InvXX_Dist, 2-264
Mean, 2-291
Median, 2-292
Mode, 2-293
Moment, 2-294 to 2-295
N-Dist, 2-298
© National Instruments Corporation I-11 LabWindows/CVI Advanced Analysis Library

Index
RMS, 2-350
Sort, 2-367
StdDev, 2-382
T_Dist, 2-393
Variance, 2-408
XX_Dist, 2-418

StdDev function, 2-382
Sub1D function, 2-383
Sub2D function, 2-384
Subset1D function, 2-385
Sum1D function, 2-386
Sum2D function, 2-387
SVD function, 2-388 to 2-389
SVDS function, 2-390
SymEigenValueVector function,

2-391 to 2-392

T
T_Dist function, 2-393
technical support, B-1 to B-2
telephone and fax support numbers, B-2
time domain functions

Clip, 2-85
Convolve, 2-92 to 2-93
Correlate, 2-95 to 2-96
Decimate, 2-156
Deconvolve, 2-157
definition, 1-9
Difference, 2-159 to 2-160
function tree, 1-4
Integrate, 2-241 to 2-242
PulseParam, 2-234 to 2-336
Reverse, 2-349
Shift, 2-360 to 2-361

ToPolar function, 2-394
ToPolar1D function, 2-395
ToRect function, 2-396
ToRect1D function, 2-397
Trace function, 2-398
TransferFunction function, 2-399

Transpose function, 2-401
Triangle function, 2-402
TriangleWave function, 2-403 to 2-404
TriWin function, 2-405
two-dimensional array operation functions

Add2D, 2-5
definition, 1-8
Div2D, 2-162
function tree, 1-3
LinEv2D, 2-277
MaxMin2D, 2-289 to 2-290
Mul2D, 2-297
PolyEv2D, 2-320 to 2-321
QScale2D, 2-340
Scale2D, 2-355 to 2-356
Sub2D, 2-384

U
Uniform function, 2-406
UnWrap1D function, 2-407

V
Variance function, 2-408
vector and matrix algebra functions

BackSub, 2-46 to 2-47
CheckPosDef, 2-80
Cholesky, 2-82 to 2-83
ConditionNumber, 2-86 to 2-87
CxCheckPosDef, 2-104
CxCholesky, 2-105 to 2-106
CxConditionNumber, 2-107 to 2-108
CxDeterminant, 2-109 to 2-110
CxDotProduct, 2-113
CxEigenValueVector, 2-114 to 2-115
CxGenInvMatrix, 2-117 to 2-118
CxGenLinEqs, 2-119 to 2-120
CxLU, 2-125 to 2-126
CxMatrixMul, 2-127 to 2-128
CxMatrixNorm, 2-129 to 2-130
LabWindows/CVI Advanced Analysis Library I-12 © National Instruments Corporation

Index
CxMatrixRank, 2-131 to 2-132
CxOuterProduct, 2-135 to 2-136
CxPolyRoots, 2-137 to 2-138
CxPseudoInverse, 2-140 to 2-141
CxQR, 2-142 to 2-143
CxSpecialMatrix, 2-145 to 2-147
CxSVD, 2-151 to 2-152
CxSVDS, 2-153
CxTrace, 2-154
CxTranspose, 2-155
definition, 1-10
Determinant, 2-158
DotProduct, 2-163
ForwSub, 2-201 to 2-202
function tree, 1-7 to 1-8
GenDeterminant, 2-207 to 2-208
GenEigenValueVector, 2-209 to 2-210
GenInvMatrix, 2-211 to 2-212
GenLinEqs, 2-213 to 2-214
InvMatrix, 2-261
LinEqs, 2-275
LU, 2-280 to 2-281
MatrixMul, 2-282 to 2-283
MatrixNorm, 2-284 to 2-285
MatrixRank, 2-286 to 2-287
NonLinearFitWith MaxIters, 2-305
Normal1D, 2-307 to 2-308
Normal2D, 2-309 to 2-310
OuterProduct, 2-314
PseudoInverse, 2-330 to 2-331
purpose and use, 1-21
QR, 2-337 to 2-338
SpecialMatrix, 2-368 to 2-370
SVD, 2-388 to 2-389
SVDS, 2-390
SymEigenValueVector, 2-391 to 2-392
Trace, 2-398
Transpose, 2-401

W
WhiteNoise function, 2-409
Wind_BPF function, 2-410 to 2-411
Wind_BSF function, 2-412 to 2-413
Wind_HPF function, 2-414 to 2-415
Wind_LPF function, 2-416 to 2-417
windowing, 1-13 to 1-15
windows functions

BkmanWin, 2-52
BlkHarrisWin, 2-53
CosTaperedWin, 2-97
definition, 1-9
ExBkmanWin, 2-188
ExpWin, 2-191
FlatTopWin, 2-199
ForceWin, 2-200
function tree, 1-5 to 1-6
GenCosWin, 2-206
HamWin, 2-228
HanWin, 2-229
KsrWin, 2-273 to 2-274
TriWin, 2-405

windType parameter, 1-16

X
XX_Dist function, 2-418
© National Instruments Corporation I-13 LabWindows/CVI Advanced Analysis Library

	LabWindows/CVI Advanced�Analysis Library Reference...
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATI...

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Advanced Analysis Library Overview
	Product Overview
	Advanced Analysis Library Function Panels
	Class and Subclass Descriptions
	Hints for Using Advanced Analysis Function Panels
	Reporting Analysis Errors
	About the Fast Fourier Transform (FFT)
	About Windowing
	About Digital Filters
	About Measurement Functions
	About Curve Fitting Functions
	About Vector & Matrix Algebra Functions

	Chapter 2 Advanced Analysis Library Function Reference
	Abs1D
	ACDCEstimator
	Add1D
	Add2D
	AllocIIRFilterPtr
	AmpPhaseSpectrum
	ANOVA1Way
	ANOVA2Way
	ANOVA3Way
	ArbitraryWave
	AutoPowerSpectrum
	BackSub
	Bessel_CascadeCoef
	Bessel_Coef
	BkmanWin
	BlkHarrisWin
	Bw_BPF
	Bw_BSF
	Bw_CascadeCoef
	Bw_Coef
	Bw_HPF
	Bw_LPF
	CascadeToDirectCoef
	Ch_BPF
	Ch_BSF
	Ch_CascadeCoef
	Ch_Coef
	Ch_HPF
	Ch_LPF
	CheckPosDef
	Chirp
	Cholesky
	Clear1D
	Clip
	ConditionNumber
	Contingency_Table
	Convolve
	Copy1D
	Correlate
	CosTaperedWin
	CrossPowerSpectrum
	CrossSpectrum
	CxAdd
	CxAdd1D
	CxCheckPosDef
	CxCholesky
	CxConditionNumber
	CxDeterminant
	CxDiv
	CxDiv1D
	CxDotProduct
	CxEigenValueVector
	CxExp
	CxGenInvMatrix
	CxGenLinEqs
	CxLinEv1D
	CxLn
	CxLog
	CxLU
	CxMatrixMul
	CxMatrixNorm
	CxMatrixRank
	CxMul
	CxMul1D
	CxOuterProduct
	CxPolyRoots
	CxPow
	CxPseudoInverse
	CxQR
	CxRecip
	CxSpecialMatrix
	CxSqrt
	CxSub
	CxSub1D
	CxSVD
	CxSVDS
	CxTrace
	CxTranspose
	Decimate
	Deconvolve
	Determinant
	Difference
	Div1D
	Div2D
	DotProduct
	Elp_BPF
	Elp_BSF
	Elp_CascadeCoef
	Elp_Coef
	Elp_HPF
	Elp_LPF
	Equi_Ripple
	EquiRpl_BPF
	EquiRpl_BSF
	EquiRpl_HPF
	EquiRpl_LPF
	ExBkmanWin
	ExpFit
	ExpWin
	F_Dist
	FFT
	FHT
	FIR_Coef
	FlatTopWin
	ForceWin
	ForwSub
	FreeAnalysisMem
	FreeIIRFilterPtr
	GaussNoise
	GenCosWin
	GenDeterminant
	GenEigenValueVector
	GenInvMatrix
	GenLinEqs
	GenLSFit
	GenLSFitCoef
	GetAnalysisErrorString
	HamWin
	HanWin
	HarmonicAnalyzer
	Histogram
	IIRCascadeFiltering
	IIRFiltering
	Impulse
	ImpulseResponse
	Integrate
	InvCh_BPF
	InvCh_BSF
	InvCh_CascadeCoef
	InvCh_Coef
	InvCh_HPF
	InvCh_LPF
	InvF_Dist
	InvFFT
	InvFHT
	InvMatrix
	InvN_Dist
	InvT_Dist
	InvXX_Dist
	Ksr_BPF
	Ksr_BSF
	Ksr_HPF
	Ksr_LPF
	KsrWin
	LinEqs
	LinEv1D
	LinEv2D
	LinFit
	LU
	MatrixMul
	MatrixNorm
	MatrixRank
	MaxMin1D
	MaxMin2D
	Mean
	Median
	Mode
	Moment
	Mul1D
	Mul2D
	N_Dist
	Neg1D
	NetworkFunctions
	NonLinearFit
	NonLinearFitWithMaxIters
	Normal1D
	Normal2D
	NumericIntegration
	OuterProduct
	PeakDetector
	PolyEv1D
	PolyEv2D
	PolyFit
	PolyInterp
	PowerFrequencyEstimate
	Prod1D
	PseudoInverse
	Pulse
	PulseParam
	QR
	QScale1D
	QScale2D
	Ramp
	RatInterp
	ReFFT
	ReInvFFT
	ResetIIRFilter
	Reverse
	RMS
	SawtoothWave
	Scale1D
	Scale2D
	ScaledWindow
	Set1D
	Shift
	Sinc
	SinePattern
	SineWave
	Sort
	SpecialMatrix
	Spectrum
	SpectrumUnitConversion
	SpInterp
	Spline
	SquareWave
	StdDev
	Sub1D
	Sub2D
	Subset1D
	Sum1D
	Sum2D
	SVD
	SVDS
	SymEigenValueVector
	T_Dist
	ToPolar
	ToPolar1D
	ToRect
	ToRect1D
	Trace
	TransferFunction
	Transpose
	Triangle
	TriangleWave
	TriWin
	Uniform
	UnWrap1D
	Variance
	WhiteNoise
	Wind_BPF
	Wind_BSF
	Wind_HPF
	Wind_LPF
	XX_Dist

	Appendix A Error Codes
	Appendix B Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	LabWindows/CVI Hardware and Software Configuration...
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	Numbers/Symbols
	A-D
	F-R
	S-V

	Index
	Numbers
	A
	B-C
	D
	E-F
	G-I
	K-M
	N-P
	Q-S
	T-V
	W-X

	Figures
	Figure 1-1. Windowed Spectrum in the Continuous Ca...
	Figure 1-2. Cascaded Filter Stages

	Tables
	Table A-1. Advanced Analysis Library Error Codes, ...
	Table A-2. Advanced Analysis Library Error Codes, ...

